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Abstract. In this paper we give effective upper bounds for the degree

k of divisors (over Q) of hypergeometric polynomials defined by

n
X

j=0

aj

(a)j
(b)j(c)j

x
j
,

where (m)j = m(m+1) · · · (m+ j−1) denotes the Pochhammer symbol

and a0, . . . , an are integers with |a0| = |an| = 1, a = −n−r, b = α+1, c ≥

1 and α = −tn − s − 1, tn + s for integers r ≥ 0, t ≥ 1, s, c bounded in

terms of k. These results generalize on earlier results of the authors and

others on generalized Laguerre polynomials.
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1. Introduction and results

For rational numbers a, b, c the hypergeometric polynomials are defined

by

ga,b,c(x) =
n
∑

j=0

(a)j
(b)j(c)j

xj ,

where (m)j = m(m + 1) · · · (m + j − 1) denotes the Pochhammer symbol.

We mention that such polynomials appear by truncating the infinite series

given by generalized hypergeometric functions of type 2F2(a, 1; b, c;x) (with

the usual notation for such functions). For a = −n, b = α+1, c = 1 one gets

g−n,α+1,1(x) =
n!

(α+ 1) · · · (α+ n)

n
∑

j=0

(α+ n) · · · (α+ j + 1)

(n− j)!j!
(−x)j

=
n!

(α+ 1) · · · (α+ n)
L(α)
n (x)

the generalized Laguerre polynomials (up to a constant).

†Corresponding author.
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Let n, s and t be integers with n ≥ 2 and |s| ≤ n and

(1) α = −tn− s− 1 with t ≥ 2

or

(2) α = tn+ s with t ≥ 1.

Such polynomials have been studied extensively, especially the case L
(α)
n (x),

starting with work by Schur [10, 11], Coleman [1] and Filaseta and others

(see e.g. [3]). We also mention the papers [2] and [5] since we shall be using

their arguments. Now we are additionally assuming that

(3) a = −n− r, b = α+ 1, c ≥ 1

for integers r, c with r ≥ 0. Let α satisfy (1). Then

ga,b,c(x) =
(n+ r)!(c− 1)!

((t− 1)n+ s+ 1) · · · (tn+ s)(n+ r + c− 1)!

n
∑

j=0

cjx
n−j

with

(4) cj =

(

n+ r + c− 1

r + j

)

((t− 1)n+ s+ 1) · · · ((t− 1)n+ s+ j)

and therefore we have for m ∈ {0, . . . , n} that

(5)
cn

cn−m
=

(tn+ s)!

(tn+ s−m)!

(n+ r −m)!

(n+ r)!

(m+ c− 1)!

(c− 1)!
.

Now let α satisfy (2). Then we have

ga,b,c(x) =
(−1)n(c− 1)!(n+ r)!

(tn+ s+ 1) · · · ((t+ 1)n+ s)(n+ c+ r − 1)!

n
∑

j=0

c′jx
n−j

with

(6) c′j = (−1)j
(

n+ r + c− 1

r + j

)

((t+ 1)n+ s− j + 1) · · · ((t+ 1)n+ s)

and therefore we have

(7)
c′n

c′n−m

= (−1)m
(tn+ s+m)!

(tn+ s)!

(n+ r −m)!

(n+ r)!

(m+ c− 1)!

(c− 1)!

for m ∈ {0, . . . , n}. For 0 ≤ j ≤ n, we write dj = cj or c′j according as α

satisfies (1) or (2). Moreover, we set

f(x) =
n
∑

j=0

djx
n−j
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and

F (x) =
n
∑

j=0

ajdjx
n−j

for integers a0, . . . , an. Here we notice that F (x) is the polynomial stated in

the abstract.

Our intention is to generalize the results of [6] to this extended setting.

It was proved there that for integers a0, . . . , an with |a0| = |an| = 1 there

exist effectively computable absolute constants η0 and ε such that for all

η0 < k ≤ n
2 and for all α with t < ε log k, 0 ≤ s < εk log k the polynomial

F (x) does not have a factor of degree k. We also mention that for 2 ≤ k ≤ n
2 ,

it was proved in [9, Theorem 1.3] that if for given ε > 0 the hypergeometric

polynomial g−n−r,α+1,c with 0 ≤ α ≤ k and r+c < (1/3−ε)k has a divisor of

degree k, then k is bounded by an effectively computable constant depending

only on ε, and in [9, Theorem 1.4] that g−n,α+1,1 with α = −n− s− 1 and

0 ≤ s ≤ 0.95k has no factor of degree k at all.

In the sequel we will denote by η1, η2, . . . effectively computable absolute

positive real constants.

Theorem 1. Let a0, . . . , an be any integers with |a0| = |an| = 1. Then there

exist constants ε > 0 and η1 such that for all η1 < k ≤ n
2 and for all α

satisfying (1) with t ≥ 4 or (2) with t ≥ 3 and for

t < ε log k, max{r, c} < k, |s| < εkϑ,

where ϑ = log k, the polynomial F (x) does not have factor of degree k.

Moreover, under the abc-conjecture, the statement holds true with ϑ =

logn.

For small values of t in both the cases for α we also get results, but

under slightly stronger restrictions. We state them separately in the following

theorem.

Theorem 2. The statement of Theorem 1 holds true for

max{r, c, |s|} < k, r + c+ |s| < n6/11+ε if α satisfies (1) with t = 2,

max{r, c, |s|} < k, r + c < n6/11+ε if α satisfies (2) with t = 1,

and for

max{r, c} < k, |s| < εkϑ, r + c < n6/11+ε

if α satisfies (1) with t = 3 or (2) with t = 2.
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The two theorems imply [6, Theorem 1,2] apart from the values of ε.

Further we observe that we cover the negative values of s in contrast to the

situation in [6].

In the proof we will again use the p-adic Newton polygon, where the prime

p satisfies certain properties. Let us write vp for the p-adic valuation and

vp(0) = ∞. Then we use the following lemma, which we take from [2]:

Lemma 1. Let k and l be integers with k > l ≥ 0 and k ≤ n
2 . Suppose that

g(x) =
n
∑

j=0

bjx
n−j ∈ Z[x]

and p is a prime such that p ∤ b0, p|bj for all j ∈ {l+1, . . . , n} and the slope

of the right-most edge of the Newton polygon for f(x)

max
1≤m≤n

{

v(bn)− v(bn−m)

m

}

is < 1/k. Then for any integers a0, . . . , an with |a0| = |an| = 1, the polyno-

mial

G(x) =
n
∑

j=0

ajbjx
n−j

cannot have a factor with degree in the interval [l + 1, k].

The existence of such primes is the main challenge (and also the most

significant difference to our results in [6]) and this will be guaranteed by

tools from analytic number theory. The result on primes that we are needing

is the following lemma:

Lemma 2. There exists a constant η2 such that for all x > η2 and for all
6
11 < θ ≤ 1 we have

0.969
y

log x
≤ π(x)− π(x− y)

for y = xθ, where π(x) is the prime counting function.

This result is taken from [7]. Moreover, for the conditional result in The-

orem 1 we recall the abc-conjecture that we will use.

Lemma 3 (abc-Conjecture). For every ǫ > 0 there exists a constant γ =

γ(ǫ) depending only on ǫ such that for all coprime nonzero integers a, b, c

with a+ b = c the inequality

max{|a|, |b|, |c|} < γN(abc)1+ǫ



DIVISIBILITY PROPERTIES OF HYPERGEOMETRIC POLYNOMIALS 5

holds, where N(m) denotes the product over all different prime divisors of

m.

Now we have everything ready to give the proof of Theorem 1 and The-

orem 2 that will be done simultaneously in the next section.

2. Proof of Theorem 1 and 2

For the proof we assume that F (x) has a factor of degree k such

that k ≤ n
2 and k exceeds a sufficiently large constant η1. Let ϑ = log n if

the abc-conjecture holds and ϑ = log k otherwise. Moreover, we put δ = 1/4.

By Lemma 2 there exists ℓ with

n13/22 ≤ ℓ < ((t+ 1)n+ s)13/22

such that (t − 1)n + s + ℓ or (t + 1)n + s − ℓ + 1 is a prime p according as

(1) or (2) holds, respectively. Then it follows from (4) and (6), respectively,

that p‖dj for j ∈ {ℓ, . . . , n} (here we use, as usual, d‖dj for d|dj and d2 ∤ dj).

Next we show that p > n + c + r. For this we have to take special care of

the small values of t. We have

(t− 1)n+ s+ ℓ ≥ n− |s|+ n6/11+ε > n+ c+ r if (1) with t = 2,

(t− 1)n+ s+ ℓ ≥ n+ n6/11+ε > n+ c+ r if (1) with t = 3,

(t+ 1)n+ s− ℓ+ 1 > n+ (n/2− n7/11) + 1

> n+ n6/11+ε > n+ c+ r if (2) with t = 1,

(t+ 1)n+ s− ℓ+ 1 > n+ (n− n7/11)

> n+ n6/11+ε > n+ c+ r if (2) with t = 2

and finally p > 2n ≥ n + c + r in all other cases. This implies p ∤ d0.

Therefore, the right-most edge of the p-adic Newton polygon for f(x) has

slope < 1/k. By Lemma 1 we conclude that k ≤ ℓ ≤ (3εn log n)13/22 ≤ n7/11.

Now we will first consider the case (1), i.e. that α = −tn − s − 1. We

write z = 6εkϑ. Observe that every prime p > z ≥ k that divides ((t −

1)n + s + 1) · · · ((t − 1)n + s + k) divides exactly one of the factors, so

p|(t − 1)n + s + 1 + ℓ for some 0 ≤ ℓ ≤ k − 1. We shall show that a prime

with this property exists. For this purpose we use the following lemma (cf.

[4, Lemma 6] and [6, Lemma 5]).
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Lemma 4. Let z be a positive real number. For each prime p ≤ z, let

dp ∈ {n, n− 1, . . . , n− k + 1} with vp(dp) maximal. Define

Qz = Qz(n, k) =
∏

p>z

pvp(A)

with A = n(n− 1) · · · (n− k + 1). Then

Qz ≥
n(n− 1) · · · (n− k + 1)

(k − 1)!
∏

p≤z p
vp(dp)

≥
(n− k + 1)k−π(z)

(k − 1)!
,

where π(z) denotes the number of primes ≤ z.

By the above lemma we get for ϑ = log k that

Qz((t− 1)n+ s+ k, k) ≥
((t− 1)n+ s+ 1)k

(k − 1)!((t− 1)n+ s)π(z)
≥ nk−2π(z)−7k/11

≥ n(4/11−12ε(1+δ)2)k > 1,

where we have used the inequality (k − 1)! ≤ kk ≤ n7k/11 and the estimate

π(z) ≤
(1 + δ)6εkϑ

log(6εkϑ)
≤ 6ε(1 + δ)2k,

that follows at once from the prime number theorem. It remains to show

that we also have a prime p > η3k log n > z for some η3 and for ε small

enough, dividing ((t − 1)n + s + 1) · · · ((t − 1)n + s + k), if we assume the

abc-conjecture to be true. For this we just have to follow the arguments of

[8, Theorem 1]. We give the proof for the readers convenience (and since the

statement that is proved there, at first sight, does not seem to be connected

to what we need). For a prime p dividing two different factors of this product

of k consecutive terms we have p ≤ k. Thus

k
∏

i=1

N((t− 1)n+ s+ i) ≤





∏

p≤P

p





∏

p≤k

p⌊k/p⌋ ≤ η4 exp (η5(P + k log k)) ,

where P denotes the largest prime divisor of ((t− 1)n+ s+1) · · · ((t− 1)n+

s+k) and N(m) the product over all primes dividing m. Now let j1, j2 with

N((t− 1)n+ s+ j1) ≤ N((t− 1)n+ s+ j2) be the smallest two values in the

set {N((t− 1)n+ s+ j); 1 ≤ j ≤ k}. It follows

N((t− 1)n+ s+ j2) ≤

(

k
∏

i=1

N((t− 1)n+ s+ i)

)1/(k−1)

= exp (η6(P/k + log k)) .
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We apply Lemma 3 with ǫ = 1 to the equation

(t− 1)n+ s+ j1
d

−
(t− 1)n+ s+ j2

d
=

j1 − j2
d

and get

n ≤ η7

(

N

(

(t− 1)n+ s+ j1
d

)

N

(

(t− 1)n+ s+ j2
d

)

|j1 − j2|

d

)2

≤ exp (η8(P/k + log k)) ,

where d denotes the greatest common divisor of (t − 1)n + s + j1 and (t −

1)n+ s+ j2. Finally, this implies P > η9k logn.

Thus there is a prime p > z dividing ((t−1)n+s+1) · · · ((t−1)n+s+k),

say p divides (t− 1)n+ s+ 1 + ℓ with 0 ≤ ℓ ≤ k − 1. We may assume that

p ∤ n + c + i for every 0 ≤ i ≤ r − 1, since assuming the contrary we have

p|n+c+i, which implies that p divides |(t−1)n+s+1+ℓ−(t−1)(n+c+i)| ≤

|s|+1+ℓ+tc+tr ≤ εkϑ+k+2εk log k ≤ 4εkϑ ≤ z, a contradiction. It follows

that p satisfies p|cj for ℓ+1 ≤ j ≤ n and p ∤ c0. Definem = m(p) ∈ {1, . . . , n}

such that

vp(cn)− vp(cn−m(p))

m(p)
= max

1≤m≤n

{

vp(cn)− vp(cn−m)

m

}

is the slope of the right most edge of the p-adic Newton polygon for f(x)

with respect to p. Then by Lemma 1 and (5) we conclude

1

k
≤

vp(cn)− vp(cn−m)

m

≤
1

m

[

vp

(

(tn+ s)!

(tn+ s−m)!

)

− vp

((

n+ r

m

))

+ vp

((

m+ c− 1

c− 1

))]

.

For estimating the third summand we may assume that m > 5εkϑ, since

otherwise m+ c− 1 ≤ 6εkϑ < p and so this summand is zero, and therefore

we get

1

m
vp

((

m+ c− 1

c− 1

))

≤
1

m
vp((m+ c− 1)!) ≤

m+ c− 1

m(p− 1)

=
1

p− 1
+

c− 1

m(p− 1)
<

1

5εkϑ
+

k

5εkϑ5εkϑ
≤

1

4k
.

If p does not divide (tn+ s−m+ 1) · · · (tn+ s) then we immediately get a

contradiction. Thus we may assume that p divides tn + s − i with 0 ≤ i ≤

m− 1. But then it also divides t((t− 1)n+ s+ ℓ+1)− (t− 1)(tn+ s− i) =

t(ℓ+1)+ s+ (t− 1)i and therefore p ≤ 2εkθ+ εm log k ≤ 2εkϑ+2εm log k.
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Since p > z = 6εkϑ, this implies that

(8)
2kϑ

log k
< m.

Moreover we get

3

4k
≤

1

m
vp

(

(tn+ s)!

(tn+ s−m)!

)

≤
1

m

∞
∑

j=1

(⌊

tn+ s

pj

⌋

−

⌊

tn+ s−m

pj

⌋)

≤
1

m

J
∑

j=1

(

m

pj
+ 1

)

≤
1

p− 1
+

J

m
≤

1

12k
+

J

m
,

where

J :=

⌊

log(tn+ s)

log p

⌋

.

This gives m ≤ 3kJ/2 and thus

(9) m ≤
3k

2

log(tn+ s)

log p
<

3(1 + δ)k log n

2 log k
.

If ϑ = logn, then it follows from (8) and (9) that 2 log n = 2ϑ < 3
2(1+δ) logn.

This contradiction proves the result if we assume that the abc-conjecture is

true. Now we give the proof for the case ϑ = log k. In fact all the above

statements are true for every prime p > z dividing (t − 1)n + s + 1 + ℓ for

some 0 ≤ ℓ ≤ k − 1. Especially this is the case for the inequalities (8) and

(9). Next we will prove the existence of such a prime with even stronger

assumptions.

Let U be the set of numbers (t−1)n+ s+1+ j with 0 ≤ j ≤ k−1, where

for every prime q ≤ z we have removed those numbers dq ∈ {(t − 1)n +

s + 1, . . . , (t − 1)n + s + k − 1} with vq(dq) maximal. We mention that all

elements of U are ≥ n if t > 2 and ≥ n/2 if t = 2. Now let Ω be the set of all

primes q > z with vq(u) > 0 for some u ∈ U and qvq(u) ≤ (2k+m)ε log k for

all u ∈ U . Observe that all such q divide exactly one u ∈ U , since q > z ≥ k.

Thus we have

log





∏

u∈U

∏

q∈Ω

qvq(u)



 ≤ log





∏

z<q≤(2k+m)ε log k

(2k +m)ε log k





≤ π((2k +m)ε log k) log((2k +m)ε log k) ≤ (1 + δ)ε(2k +m) log k

≤ ε(1 + δ)(2k log k + 3k logn) ≤ 5ε(1 + δ)k logn,
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where for the second summand (9) was used. It follows that

log





∏

u∈U

∏

q≤z

qvq(u)



+ log





∏

u∈U

∏

q∈Ω

qvq(u)





≤
(1 + δ)6εk log k

log(6εk log k)
log k + 5ε(1 + δ)k logn ≤

2

3
k log n,

since k ≤ n7/11. On the other side we have

log

(

∏

u∈U

u

)

≥ log(((t− 1)n+ s+ 1) · · · ((t− 1)n+ s+ k − π(z)))

≥ (k − π(z)) log
n

2
>

2

3
k logn.

By comparing the lower and upper bound just obtained we conclude that

there is a prime q > z that divides some element u ∈ U with the additional

property that qvq(u) > (2k+m)ε log k. We write u = (t−1)n+ s+ ℓ+1, 0 ≤

ℓ ≤ k − 1 and define f by qf−1 ≤ (2k +m)ε log k < qf and such that qf |u.

Observe that 1 ≤ f ≤ vq(u).

Now if qf divides tn+ s− i for some 0 ≤ i ≤ m− 1, then it also divides

|t((t−1)n+ s+ ℓ+1)− (t−1)(tn+ s− i)| ≤ tℓ+ t+ |s|+(t−1)i < 3εk log k

which contradicts the fact that qf > (2k + m)ε log k by (8). Thus qf does

not divide tn+ s− i for any 0 ≤ i ≤ m− 1 and we conclude

3

4k
≤

1

m
vq

(

(tn+ s)!

(tn+ s−m)!

)

≤
1

m

f−1
∑

j=1

(

m

qj
+ 1

)

≤
1

q − 1
+

f − 1

m
.

For f = 1 we immediately get a contradiction. For f ≥ 2 we get

2(2k+m)ε log k ≥ qf−1+(2k+m)ε log k log k ≥ (f −1)6εk log k+4εk log k,

where we have used (8), and therefore 3(f − 1)k < m, which gives

3

4k
≤

1

q − 1
+

f − 1

m
<

5

12k
+

1

3k
=

3

4k
,

a contradiction again. This completes the proof in this case.

Now we come to the case (2), i.e. that α = tn + s. Here we can argue

in almost the same way. We have to consider primes p > z = 6εkϑ that

divide ((t+ 1)n+ s− k + 1) · · · ((t+ 1)n+ s) and we show by following the

arguments from above that such a prime exists. As before we may assume

that a prime dividing (t + 1)n + s − ℓ for some 0 ≤ ℓ ≤ k − 1 does not
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divide any of n + c + i for 0 ≤ i ≤ r − 1, since otherwise we have that p

divides |(t + 1)n + s − ℓ − (t + 1)(n + c + i)| ≤ |s| + ℓ + (t + 1)(c + r) ≤

εkϑ + k + 4εk log k ≤ 6εkϑ = z. Therefore it follows that such a p satisfies

p|c′j for ℓ + 1 ≤ j ≤ n and p ∤ c′0. Proceeding as in the previous case we

conclude from Lemma 1 and (7) that

1

k
≤

vp(c
′
n)− vp(c

′
n−m)

m

≤
1

m

[

vp

(

(tn+ s+m)!

(tn+ s)!

)

− vp

((

n+ r

m

))

+ vp

((

m+ c− 1

c− 1

))]

.

In the same way as before we can estimate the third summand and we

may assume that p divides tn+ s+m− i with 0 ≤ i ≤ m− 1 and therefore

6εkϑ = z < p ≤ |t((t+1)n+s−ℓ)−(t+1)(tn+s+m−i)| ≤ tℓ+|s|+(t+1)m ≤

2εkϑ + 2mε log k, which again implies 2kϑ/ log k < m. On the other hand,

one shows m ≤ 3kJ/2 with

J :=

⌊

log((t+ 1)n+ s)

log p

⌋

,

which gives m < 3(1 + δ)k log n/(2 log k). For ϑ = logn we conclude the

proof by comparing the lower and upper bound for m. Thus we may assume

that ϑ = log k. By arguing as above we get a prime q > z that divides

exactly one element of the form u = (t+1)n+ s− ℓ, 0 ≤ ℓ ≤ k− 1 and with

qvq(u) > (2k +m)ε log k (observe that now all such elements u are ≥ n). By

defining f as before we conclude that qf does not divide tn + s + 1 + i for

any 0 ≤ i ≤ m− 1, since otherwise it would divide t((t+ 1)n+ s− ℓ)− (t+

1)(tn+ s+ 1 + i) = −tℓ− ts− (t+ 1)(1 + i) that contradicts qf > z being

large. Similar as in the case (1) the proof can be finished.
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I., Sitzungsber. Preuss. Akad. Wiss. Berlin. Phys.-Math. Kl. 14 (1929), 125-136.

[11] I. Schur, Affektlose Gleichungen in der Theorie der Lagurreschen und Hermiteschen

Polynome, J. Reine Angew. Math. 165 (1931), 52-58.

Clemens Fuchs

Department of Mathematics, ETH Zurich

Rämistrasse 101, 8092 Zürich, Switzerland
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