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Abstract. In this paper we give effective upper bounds for the degree

k of divisors (over Q) of generalized Laguerre polynomials L
(α)
n (x), i.e.

of

L
(α)
n (x) =

n
X

j=0

 

n + α

n − j

!

(−x)j

j!
,

for α = −tn − s − 1 and α = tn + s with t, s ∈ N, t = O(log k), s =

O(k log k) and k sufficiently large.
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1. Introduction and results

The generalized Laguerre polynomials L
(α)
n (x) are well-known and ex-

tensively studied objects in different areas of mathematics, e.g. in analysis,

combinatorics and mathematical physics. We define

L(α)
n (x) =

n
∑

j=0

(

n + α

n − j

)

(−x)j

j!
=

n
∑

j=0

(n + α)(n − 1 + α) · · · (j + 1 + α)

(n − j)!j!
(−x)j

for α ∈ R, n ∈ N. An important instance is given by the case α = −2n − 1,

since there we have the relation

(−1)nn!L(−2n−1)
n (x) = xnBn(2/x)

and Bn(x) are the Bessel polynomials. The leading coefficient is given by

(−1)n/n!.

In this paper we are concerned with questions on the divisors of L
(α)
n (x)

over Q. In 1929 I. Schur proved that L
(0)
n (x) and L

(−n−1)
n (x) are irreducible

(over Q) and in 1931 he proved the same for L
(1)
n (x) (cf. [14, 15]). A new

proof for the case α = −n − 1 was given by R.F. Coleman [1] in 1987 by

using the Newton polygon. In fact Coleman and M. Filaseta developed a new

†Corresponding author.
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method for attacking these kind of problems. An overview of the results can

be found in [4]. Filaseta [3] proved in 1995 that L
(−2n−1)
n (x) is irreducible

for all but finitely many n, and in turn he immediately obtained the same

result for the Bessel polynomials (by the connection given above). Later in

2002 Filaseta and O. Trifonov [6] extended this result to all integers n. In

the same year, Filaseta and T.-Y. Lam [5] proved that L
(α)
n (x) is irreducible

for all but finitely n for a fixed α ∈ Q\Z−. We point out that the exclusion of

the negative integers is really necessary, since for α = −r with r ∈ N an easy

computation shows that L
(α)
n (x) is reducible for n ≥ r. The irreducibility for

α = −n − r and r = 2, . . . , 9 was shown by F. Hajir [9, 10] (the case r = 3

is by E.A. Sell [16]). Hajir also proved that for a fixed positive integer r the

polynomial L
(−n−r)
n (x) is irreducible for all but finitely many n. We mention

that the statements on all but finitely many n are effective in the sense that

an explicit lower bound for the n from which onward the statement is true

can be given. Hajir conjectured in [10] that for all non-negative integers n, s

the generalized Laguerre polynomial L
(−n−s−1)
n (x) is irreducible. Another

instance of this problem was recently considered by Filseta, T. Kidd and

Trifonov in [7]. They showed that L
(n)
n (x) is irreducible for every n with n ≡ 2

(mod 4) with the exception n = 2, where this is false, and for all other n the

polynomial L
(n)
n (x) is either irreducible or it is a linear polynomial times an

irreducible polynomial of degree n − 1.

Instead of proving that L
(−n−s−1)
n (x) is irreducible one can try to exclude

divisors of large degree for many values of s. Recently, R. Tijdeman and

the second author [13] proved that for every 0 ≤ α ≤ 30, α ∈ Z and

4 < k ≤ n
2 , the polynomial L

(α)
n (x) has no factor of degree k. Moreover,

they proved that if 2 ≤ k ≤ n
2 and s is an integer with 0 ≤ s ≤ 0.8k, then

L
(−n−s−1)
n (x) does not have a factor of degree k. In their paper they study

in fact a more general situation than the case of Laguerre polynomials,

where the above results are just some special cases. In this paper we shall

consider an analogous problem for L
(t′n+s′)
n where s′ and |t′| ≥ 1 are integers.

Now we fix some notation which we shall always follow in this paper

without reference. Let n, s, t be integers with n ≥ 2, 0 ≤ s ≤ n and let α be

given by either

(1) α = −tn − s − 1 with t ≥ 2
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or

(2) α = tn + s with t ≥ 1.

First let α satisfy (1). We have

L(α)
n (x) =

n
∑

j=0

(n − tn − s − 1) · · · (j + 1 − tn − s − 1)

(n − j)!j!
(−x)j

=
n

∑

j=0

(−(t − 1)n − s − 1) · · · (j − tn − s)

(n − j)!j!
(−x)j

= (−1)n
n

∑

j=0

((t − 1)n + s + 1) · · · ((t − 1)n + s + j)

(n − j)!j!
xn−j

and therefore

(−1)nn!L(α)
n (x) =:

n
∑

j=0

cjx
n−j

where

cj =

(

n

j

)

((t − 1)n + s + 1) · · · ((t − 1)n + s + j)(3)

=

(

(t − 1)n + s + j

j

)

(n − j + 1) · · ·n.

Observe that for every m ∈ {0, . . . , n} we thus have

(4)
cn

cn−m
=

(tn + s)!

(tn + s − m)!
·
(n − m)!

n!
· m!.

Let α satisfy (2). Then

(−1)nn!L(α)
n (x) = (−1)nn!

n
∑

j=0

(

(t + 1)n + s

n − j

)

(−x)j

j!
=:

n
∑

j=0

c′jx
n−j ,

where

(5) c′j = (−1)j

(

n

j

)

((t + 1)n + s − j + 1) · · · ((t + 1)n + s).

Thus

(6)
c′n

c′n−m

= (−1)m (tn + s + m)!

(tn + s)!
·
(n − m)!

n!
· m!

for every m ∈ {0, 1, . . . , n}. The relations (4) and (6) will be of importance

later on. For 0 ≤ j ≤ n, we write dj = cj or c′j according as α satisfies (1)
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or (2), respectively. Moreover, we set

f(x) :=
n

∑

j=0

djx
n−j

and

F (x) :=
n

∑

j=0

ajdjx
n−j

for integers a0, a1, . . . , an. In the sequel we will denote by η1, η2, . . . effectively

computable absolute positive real constants. We have the following result.

Theorem 1. Let ε = 1/5 if α < 0 and ε = 1/112 if α > 0. Let a0, a1, . . . , an

be any integers with |a0| = |an| = 1. Then there exists a constant η1 such

that for all k with

η1 < k ≤
n

2
and for all α satisfying (1) or (2) with

t < ε log k, s < εk log k,

the polynomial F (x) does not have a factor of degree k.

Concerning the role of F (x) compared to f(x) we mention that many

of the results from the introduction are also of such a general shape. As a

special case we immediately get the following result for generalized Laguerre

polynomials, which we state separately.

Theorem 2. Let ε be as in Theorem 1. There exists a constant η2 such that

for all k with

η2 < k ≤
n

2
and all α satisfying (1) or (2) with

t < ε log k, s < εk log k,

the polynomial L
(α)
n (x) has no factor of degree k.

In the proof we will see that if n ≤ k42/23, then Theorem 1 is also valid

with t < ε log n, s < εk log n. The assumption n ≤ k42/23 is relaxed as follows

in the case of negative integers, i.e. in case α satisfies (1).

Theorem 3. Let ε = 1/7 and a0, a1, . . . , an be any integers with |a0| =

|an| = 1. There is a constant η3 such that for all n > η3 and all α satisfying

(1) with

exp
(

(log n)
2
3
(1+ε)

)

≤ k ≤
n

2
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and

t < ε log n, s < εk log n,

the polynomial F (x) does not have a factor of degree k.

The proofs of Theorems 1 and 3 split in two parts. First by using p-adic

arguments, especially the p-adic Newton polygon, we reduce the problem

to finding a prime p having certain properties. By considering several cases

depending on k the proof will be finished.

In the next section we introduce the Newton polygon with respect to a

prime p and give some auxiliary results on this polygon, as well as on primes

in certain intervals. Afterwards, we will give the proofs of Theorem 1 and 3,

respectively.

2. Newton polygons and preliminaries on primes

For a prime p let vp be a p-adic valuation, i.e. for a positive integer n

we have that vp(n) is the largest integer such that pvp(n)|n (we will also

use the notation pvp(n)‖n, for short) and vp(0) = ∞. We shall also write

v for vp when it will be clear from the context which p we are taking. Let

g(x) =
∑n

j=0 bjx
n−j ∈ Z[x] with b0bn 6= 0. The p-adic Newton polygon (or

just Newton polygon) for g(x) with respect to the prime p is now defined

as the polygonal path formed by the lower edges of the convex hull of the

points

(0, v(b0)), (1, v(b1)), (2, v(b2)), . . . , (n − 1, v(bn−1)), (n, v(bn)).

The left-most endpoint is (0, v(b0)) and the right-most endpoint is (n, v(bn)).

Moreover, the endpoints of each edge belong to the above set and the slopes

of the edges strictly increase from left to right.

Then Filaseta [3, Lemma 2] proved the following result.

Lemma 1. Let k and ℓ be integers with k > ℓ ≥ 0 and k ≤ n/2. Suppose

that

g(x) =
n

∑

j=0

bjx
n−j ∈ Z[x]

and p is a prime such that p ∤ b0, p|bj for all j ∈ {ℓ+1, . . . , n} and the right-

most edge of the Newton polygon for g(x) with respect to p has slope < 1/k.

Then for any integers a0, a1, . . . , an with |a0| = |an| = 1, the polynomial

G(x) =
n

∑

j=0

ajbjx
n−j
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cannot have a factor with degree in the interval [ℓ + 1, k].

We apply this lemma in the case L
(α)
n (x), in fact we will use g(x) = f(x)

and G(x) = F (x).

The next result is an estimate on the difference between consecutive

primes and it will be used in the proof of Theorem 1.

Lemma 2 (S.T. Lou and Q. Yao, [12]). Denote by pn the n-th prime number

and let ε > 0. There exists a constant η4 such that

pn+1 − pn ≤ η4 p6/11+ε
n .

We remark that the upper bound is already quite good, since under the

Riemann hypothesis the ideal bound would be ≪ p
1/2
n log pn ≪ p

1/2+ε
n (with

the usual meaning of ≪). Furthermore, observe that the lemma implies

that there is η5 such that for any x > η5 there exists a prime in the interval

[x, x+x1/2+1/21] as well as in the interval [x−x1/2+1/21.5, x] ⊇ [x−x47/86, x].

For Theorem 3 we need a result on the largest prime factor in a product

of consecutive integers.

Lemma 3 (M. Jutila, [11]). Let u and k be positive integers and let P (u, k)

be the largest prime factor of (u + 1) · · · (u + k). Then there are constants

η6, η7 and η8 such that for

k3/2 ≤ u ≤ kη6(log k)1/2/ log log k

we have

P (u, k) ≥ η8k
1+η7Λ(k,u),

where Λ(k, u) = (log k/ log u)2.

Now we are ready to prove our assertions. This will be done in the next

two sections.

3. Proof of Theorem 1

Let ε = 1/5 if α < 0 and ε = 1/112 if α > 0 and set δ = 1/16. Let η1

be sufficiently large. Assume that F (x) has a factor of degree k such that

η1 < k ≤ n
2 and ε log k > t, εk log k > s. Observe that n ≥ 2k and therefore

n exceeds a sufficiently large effectively computable absolute constant. We

divide the proof of Theorem 1 in two parts according to (1) or (2).
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3.1. The case of negative indices, i.e. the case (1). First by Lemma 2

(see also the remark made afterwards) it follows that there is a prime p of

the form p = (t − 1)n + s + ℓ with

(7) 0 < ℓ ≤ ((t − 1)n + s)1/2+1/21 ≤ (tn)23/42 < (n log n)23/42.

From the definition of the cj (cf. (3)) it follows at once that p‖cj for

j ∈ {ℓ, . . . , n} and p ∤ c0 = 1. Thus the right-most edge of the Newton

polygon for f(x) with respect to p has endpoints (ℓ − 1, 0), (n, 1) and

therefore, by (7), its slope is 1/(n − ℓ + 1) < 2/n ≤ 1/k. By Lemma 1 we

get a contradiction unless k ≤ ℓ. Hence we can assume k ≤ ℓ ≤ (tn)23/42.

Now we consider two different cases depending on the size of k, namely

n11/21 ≤ k and k < n11/21:

Assume that n11/21 ≤ k. Then since k ≤ (tn)23/42 and 1/2 < 11/21, we

have n1/2 < n11/21 ≤ k ≤ (tn)23/42. We start by proving the following lemma

which extends Filaseta [3, Lemma 4] with t = 2, s = 0.

Lemma 4. Let n, r and k ≤ n/2 be positive integers, ℓ ∈ {0, 1, . . . , k − 1}

and let p ≥ tk + s + 1 be a prime number satisfying pr‖n − ℓ and

(8)
log(tn + s)

pr log p
+

1

p − 1
≤

1

k
.

Then F (x) does not have a factor with degree ∈ [ℓ + 1, k].

Proof. We start by introducing the function

a(n, j) :=

⌊

n

pj

⌋

−

⌊

n − m

pj

⌋

(obviously a(n, j) also depends on m and p), which is equal to the number

of multiples of pj in (n − m, n] and where ⌊x⌋ is defined to be the largest

integer ≤ x. Since

v(m!) =

∞
∑

j=1

⌊

m

pj

⌋

<

∞
∑

j=1

m

pj
=

m

p − 1
,

we show that it suffices to prove that

(9) a(tn + s, j) − a(n, j) ≤
m

pr

for all

j ≤ J :=

⌊

log(tn + s)

log p

⌋

.



8 C. FUCHS AND T.N. SHOREY

Because of (4) we now have

v(cn) − v(cn−m)

m
=

v(m!)

m
+

1

m

[

v

(

(tn + s)!

(tn + s − m)!

)

− v

(

n!

(n − m)!

)]

=
v(m!)

m
+

∞
∑

j=1

a(tn + s, j) − a(n, j)

m
,

where the sum in fact just runs over j ≤ J , since for j > J we have pj >

tn+s, which implies a(tn+s, j) = a(n, j) = 0. Thus, by using the inequalities

obtained so far together with the hypothesis in (8), the slope of the right-

most edge of the Newton polygon for f(x) is bounded by

max
1≤m≤n

{

v(cn) − v(cn−m)

m

}

<
1

p − 1
+

log(tn + s)

pr log p
≤

1

k
.

Since p|n(n − 1) · · · (n − ℓ) and p > k ≥ j it follows that p|cj for j ∈

{ℓ+1, . . . , n} and p ∤ c0 = 1 (cf. equation (3)). Therefore, we get by Lemma

1 that F (x) does not have a factor with degree ∈ [ℓ + 1, k]. This proves the

assertion.

We have to prove (9) and we do it by considering three cases depending

on the size of j and m.

Case 1. Assume that 1 ≤ j ≤ r: We will use that pr‖n − ℓ, which implies

that there is an integer u with n = pru + ℓ. It follows that

a(tn + s, j) =

⌊

tn + s

pj

⌋

−

⌊

tn + s − m

pj

⌋

=

⌊

tpr−ju +
tℓ + s

pj

⌋

−

⌊

tpr−ju +
tℓ + s − m

pj

⌋

=

⌊

tℓ + s

pj

⌋

−

⌊

tℓ + s − m

pj

⌋

= −

⌊

tℓ + s − m

pj

⌋

a(n, j) =

⌊

n

pj

⌋

−

⌊

n − m

pj

⌋

=

⌊

pr−ju +
ℓ

pj

⌋

−

⌊

pr−ju +
ℓ − m

pj

⌋

=

⌊

ℓ

pj

⌋

−

⌊

ℓ − m

pj

⌋

= −

⌊

ℓ − m

pj

⌋

,

where we have used that our prime p satisfies pj ≥ p > tℓ + s. Therefore we

get

a(tn + s, j) − a(n, j) = −

⌊

tℓ + s − m

pj

⌋

+

⌊

ℓ − m

pj

⌋

≤ 0.

It follows that (9) is trivially true.
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Case 2. Assume now m ≤ tℓ + s: It first follows that (tn + s − m, tn + s] ⊆

(tn + s − tℓ − s, tn + s] = (tn − tℓ, tn + s]. Since p|n − ℓ we get

p|tn− tℓ. Together with p > tℓ+s this implies that there is no multiple of pj

in (tn+s−m, tn+s] at all, which gives a(tn+s, j) = 0. Thus (9) again holds.

Case 3. Finally assume j > r, m > tℓ + s: We observe that the number

of multiples of pr in (tn + s − m, tn + s] ⊃ [tn − tℓ, tn + s] is bounded by

⌊m/pr⌋+1. Since p ≥ tk+s+1 > t, the multiple tn− tℓ of pr is not divisible

by pj . Therefore

a(tn + s, j) ≤ a(tn + s, r) − 1 ≤

⌊

m

pr

⌋

.

So in this case the inequality (9) holds too.

Altogether, we have covered all cases and this completes the proof of

Lemma 4. ¤

Thus we just have to prove that there is a prime p > 2εk log k, which

implies p > (t + 1)k > (t + 1)n1/2 and p ≥ tk + s + 1, that divides n(n −

1) · · · (n − k + 1). Then

log(tn + s)

pr log p
+

1

p − 1
≤

log((t + 1)n)

(t + 1)k log((t + 1)n1/2)
+

1

(t + 1)k
≤

1

k
,

since log((t + 1)n)/ log((t + 1)n1/2) ≤ 2 ≤ t and then the contradiction

follows by Lemma 4. To show that such a prime exists we use the following

lemma, which is based on an argument first given by Erdős in [2]. We take

the following version that can be found in [7, Lemma 6].

Lemma 5. Let z be a positive real number. For each prime p ≤ z, let

dp ∈ {n, n − 1, . . . , n − k + 1} with vp(dp) maximal. Define

Qz = Qz(n, k) =
∏

p>z

pvp(A)

with A = n(n − 1) · · · (n − k + 1). Then

Qz ≥
n(n − 1) · · · (n − k + 1)

(k − 1)!
∏

p≤z pvp(dp)
≥

(n − k + 1)k−π(z)

(k − 1)!
,

where π(z) denotes the number of primes ≤ z.
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We write z = 2εk log k in this case. By the prime number theorem we

have

π(z) ≤
(1 + δ)2εk log k

log(2εk log k)
.

We get

Qz ≥

(

1

2
n

)k−(1+δ)2εk log k/ log(2εk log k)

(εn log k)−23k/42

≥
(

n19/42−(1+δ)2ε log k/ log(2εk)(ε log k)−23/422(1+δ)2ε log k/ log(2εk)−1
)k

,(10)

where we have used that n − k + 1 ≥ 1
2n and (k − 1)! ≤ kk ≤ (tn)23k/42 <

(εn log k)23k/42. By definition of Qz we now just have to guarantee that

the exponent of n in the right hand side of (10) is > 0, then the existence

of a prime p with the required properties follows. The exponent of n

is 19/42 − (1 + δ)2ε log k/ log(2εk) ≥ 19/42 − 2ε(1 + δ)2 > 0, since

log k/ log(2εk) ≤ 1 + δ, ε = 1/5 and δ = 1/16, implying Qz > 1. This

completes the proof in the first case.

Now we turn to the second case and assume that k < n11/21. In this case

we can immediately improve the lower bound for Qz in the arguments above

to

(11) Qz ≥

(

1

2
n

)k−(1+δ)2εk log k/ log(2εk)

n−11k/21 ≥ nk/412−k ≥ nk/42,

since 10/21 − (1 + δ)2ε log k/ log(2εk log k) ≥ 10/21 − 2ε(1 + δ)2 ≥ 1/41.

Now let p > z be a prime with p|n(n − 1) · · · (n − k + 1). Note that since

p ≥ tk+s+1 > k it follows that p divides exactly one of n, n−1, . . . , n−k+1.

Assume that p|n−ℓ with ℓ ∈ {0, . . . , k−1} and let r > 0 be such that pr‖n−ℓ.

Moreover, observe that (with the notation of Lemma 5) we have r = vp(A).

Since we are assuming that F (x) has a factor of degree k it follows by Lemma

4 applied with this prime p that we must have

log(tn + s)

pvp(A) log p
+

1

p − 1
=

log(tn + s)

pr log p
+

1

p − 1
>

1

k
.

Since p > (t+1)k ≥ 3k, we have 1/(p−1) ≤ 1/(3k) and therefore we deduce

from the last formula that

pvp(A) <
3k log((t + 1)n)

2 log p
≤

3
(

1 + log(t+1)
log n

)

2 log((t + 1)k)
k log n <

1

43
k log n;
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this is true since (129/2)(log(t + 1) + log n) < log n log(t + 1) + log n log k.

Therefore, we get

p <
1

43
k log n and vp(A) <

log k + log log n − log 43

log p

and hence
∑

p>z

vp(A) log p <
∑

z<p≤ 1
43

k log n

(log k + log log n − log 43) ≤
1

42
k log n.

By comparing this upper bound for log Qz with the lower bound from (11)

we immediately end up with a contradiction. This proves the assertion in

the second case.

3.2. The case of positive indices, i.e. the case (2). Assume first that

n23/42 ≤ k ≤ n
2 . By Lemma 2 we get that there is a prime p of the form

p = (t + 1)n + s − ℓ with

ℓ ≤ ((t + 1)n + s)47/86 ≤ (3n log n)47/86 < n23/42 ≤ k.

By the definition of the c′j (see (5)) it follows that p divides c′ℓ+1, . . . , c
′
n,

and clearly it does not divide c′0 = 1. Therefore vp(c
′
j) ≥ 1 for

j ∈ {ℓ + 1, . . . , n} and vp(c
′
0) = 0. Since p > tn + s and therefore

2p > 2tn + 2s ≥ (t + 1)n + s , we see that (t + 1)n + s − ℓ = p is the only

multiple of p among the numbers (t + 1)n + s − j with 0 ≤ j < n. Finally,

from c′n = (−1)n(tn + s + 1) · · · ((t + 1)n + s) we get that vp(c
′
n) = 1.

Therefore, the right-most edge of the Newton polygon of f(x) has slope

< 1/(n − k) ≤ 1/k. This is not possible by Lemma 1 and therefore there is

no factor of degree k in the range.

Now we can assume that k < n23/42. We write z = 6εk log k in this case.

By observing that (t + 1)n + s − k + 1 ≥ tn + s ≥ n, we get from Lemma 5

Qz((t + 1)n + s, k) ≥ nk−π(z)n−23/42k ≥
(

n19/42−(1+δ)6ε log k/ log(6εk)
)k

> 1,

since 19/42 − 6ε(1 + δ)2 > 0. It follows that there is a prime p > z ≥ 2k

dividing (t + 1)n + s− ℓ with 0 ≤ ℓ ≤ k− 1. For such a prime it follows that

p|c′j for j ∈ {ℓ + 1, . . . , n} and we define m = m(p) ∈ {1, . . . , n} such that

vp(c
′
n) − vp(c

′
n−m)

m
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is the slope of the right most edge of the Newton polygon for f(x) with

respect to p. Then we have by Lemma 1 and (6) that

1

k
≤

vp(c
′
n) − vp(c

′
n−m)

m
≤

1

m

[

vp

(

(tn + s + m)!

(tn + s)!

)

− vp

((

n

m

))]

≤
1

m
vp((tn + s + 1) · · · (tn + s + m))

≤
1

m

∞
∑

j=1

(⌊

tn + s + m

pj

⌋

−

⌊

tn + s

pj

⌋)

≤
1

m

J
∑

j=1

(

m

pj
+ 1

)

≤
1

p − 1
+

J

m
≤

1

2k
+

J

m
,

where

J :=

⌊

log((t + 1)n + s)

log p

⌋

.

It follows that m ≤ 2kJ and thus

(12) m ≤
2k log((t + 1)n + s)

log p
<

4k log n

log k
=: m0.

So this inequality is true for all primes p > z dividing (t + 1)n + s − ℓ with

0 ≤ ℓ ≤ k − 1.

Let U := {(t + 1)n + s, . . . , (t + 1)n + s − k + 1}\{bq : q ≤ z}, where for

all primes q ≤ z we have removed those numbers bq ∈ {(t + 1)n + s, . . . , (t +

1)n+ s− k +1} with vq(bq) maximal. We mention, as we have already seen,

that all elements of U are ≥ n. Now let Ω be the set of all primes q > z with

vq(u) > 0 from some u ∈ U and qvq(u) ≤ 2ε(m + k) log k for all u ∈ U . Here

we recall that m = m(q) satisfies (12), since q > z and divides some u ∈ U .

Observe that such a q divides exactly one u ∈ U , since q > z ≥ k. Thus we

have

log





∏

u∈U

∏

q∈Ω

qvq(u)



 ≤ log





∏

z<q≤2ε(m0+k) log k

2ε(m0 + k) log k





≤ π(2ε(m0 + k) log k) log(2ε(m0 + k) log k)

≤ (1 + δ)2ε(m0 + k) log k

≤ 12(1 + δ)εk log n,
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by using (12). It follows that

log





∏

u∈U

∏

q≤z

qvq(u)
∏

q∈Ω

qvq(u)



 ≤ k log k + 12(1 + δ)εk log n ≤
2

3
k log n,

since k < n23/42. On the other hand we have

log

(

∏

u∈U

u

)

≥ (k − π(z)) log n ≥

(

1 −
(1 + δ)6ε log k

log(6εk)

)

k log n >
2

3
k log n,

since log k/ log(6εk) ≤ 1+δ. By putting the last two statements together we

conclude that there is a prime q > z that divides some element u ∈ U with

the additional property that qvq(u) > 2ε(m+k) log k. Let u = (t+1)n+s−ℓ

with 0 ≤ ℓ ≤ k − 1 and let r be defined by qr > 2ε(m + k) log k ≥ qr−1 and

such that qr divides u. Again, by (5), it follows that this prime divides c′j for

j ∈ {ℓ + 1, . . . , n}. If qr divides tn + s + j for some 1 ≤ j ≤ m, then it also

divides (t+1)(tn+ s+ j)− t((t+1)n+ s− ℓ) = s+ tj + tℓ+ j and therefore

qr ≤ s + (t + 1)m + t(k − 1) ≤ 2ε(m + k) log k, which is a contradiction.

Therefore, qr does not divide tn + s + j for all 1 ≤ j ≤ m. Hence, we now

have

1

k
≤

vq(c
′
n) − vq(c

′
n−m)

m
≤

1

m
vq((tn + s + 1) · · · (tn + s + m))

≤
1

m

r−1
∑

j=1

(

m

qj
+ 1

)

≤
1

q − 1
+

r − 1

m
<

1

3k
+

r − 1

m
,

since q > z ≥ 3k. For r ≥ 2 we have

2(2ε(m + k) log k) ≥ 2qr−1 > 2(6εk log k)r−1 ≥ (6εk log k)r−1 + 4εk log k

and therefore

4εm log k > (6εk log k)r−1 ≥ (r − 1)6εk log k.

Finally we conclude

m >
3

2
k(r − 1)

and
1

k
≤

vq(c
′
n) − vq(c

′
n−m)

m
<

1

3k
+

2

3k
=

1

k
,

which is a contradiction. This completes the proof of Theorem 1.
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4. Proof of Theorem 3

We take ε = 1/7 and δ = 1/40 in the proof of Theorem 3. Further, let η3

be sufficiently large. Assume that F (x) has a factor of degree k ≤ 1
2n such

that t < ε log n, s < εk log n with n > η3.

We can start as in the proof of Theorem 1 and conclude that, actually, we

may assume that k ≤ (tn)23/42. Moreover, we can follow the arguments given

there afterwards, but for k in the range k ≥ (n/2)2/3. Namely, by applying

Lemma 5 and the prime number theorem we get that for z = 2εk log n we

have

Qz ≥

(

1

2
n

)k−π(z)

(tn)−23k/42

≥

(

n
19
42

−
(1+δ)2ε log n

log(2ε(n/2)2/3 log n) (ε log n)−
23
42 2

−1+
(1+δ)2ε log n

log(2ε(n/2)2/3 log n)

)k

,

which shows, since ε = 1/7 and log n/ log(2ε(n/2)2/3 log n) ≤ 3/2, that

there is a prime p > 2εk log n > εn2/3 and p ≥ tk + s + 1 that divides

n(n−1) · · · (n−k +1). For this prime we have tn+ s < εn log n+ εk log n ≤

2εn log n and

log(tn + s)

p log p
+

1

p − 1
≤

log(2εn log n)

2εk log n log
(

εn2/3
) +

1

εk log n
≤

1

k

and therefore it follows by Lemma 4 that F (x) cannot have a factor of

degree k.

Let η6, η7 and η8 be the constants appearing in Lemma 3. We are left

with k ≤ (n/2)2/3, i.e. with 2k3/2 ≤ n. Since we are assuming that log n ≤

(log k)3/2(1+ε)−1
≤ (log k)3/2(1−ε/2) it follows that

log n ≤ η6
(log k)3/2

log log k

and therefore that

(13) k3/2 ≤
n

2
≤ u := n − k ≤ n ≤ kη6(log k)1/2/ log log k.

Hence, by the same lemma we get that the largest prime factor p = P (u, k)

of n(n − 1) · · · (n − k + 1) = (u + 1)(u + 2) · · · (u + k) satisfies

p ≥ η8k
1+η7Λ(k,u).
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We observe

Λ(k, u) ≥

(

log k

log n

)2

≥ η−2
6

(

log log k

(log k)1/2

)2

≥ η9
(log log n)2

log k

where we have used the last inequality in (13) again. Thus, p ≥

η10k(log n)2 > k log n and p > 2εk log n > tk + s. But since

log(tn + s)

p log p
+

1

p − 1
≤

log(2εn log n)

k log n log(log n)
+

1

p − 1
≤

1

k

it follows again by Lemma 4 that F (x) cannot have a factor of degree k.

This is a contradiction.

This completes the proof of Theorem 3.
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