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Abstract. In this paper we give an overview over recent developments
(initiated by P. Corvaja and U. Zannier in [3]) on Diophantine problems
where linear recurring sequences are involved and which were solved by
using W.M. Schmidt’s Subspace Theorem.

Moreover, as a new application, we show: let (Gn) and (Hn) be linear
recurring sequences of integers defined by Gn = c1α

n
1 +c2α

n
2 + · · ·+ctα

n
t

and Hn = d1β
n
1 + d2β

n
2 + · · · + dsβ

n
s , where t, s ≥ 2, ci, dj are non-zero

rational numbers and where α1 > . . . αt > 0, β1 > . . . > βs > 0 are
integers with α1, α2 · · ·αtβ1 · · · βs coprime, and let ε > 0. Then, we have

G.C.D.(Gn, Hn) < exp(εn)

for all n large enough.

1. Introduction

Let A1, A2, . . . , Ak and G0, G1, . . . , Gk−1 be integers and let (Gn) be a
k-th order linear recurring sequence given by

(1) Gn = A1Gn−1 + · · · + AkGn−k for n = k, k + 1, . . . .

It is well known that Gn admits an analytic representation, namely for n ≥ 0

(2) Gn = P1(n)αn
1 + P2(n)αn

2 + · · · + Pt(n)αn
t ,

where α1, α2, . . . , αt are the distinct roots of the corresponding characteristic
polynomial

(3) Xk − A1X
k−1 − · · · − Ak

and where Pi(n) is a polynomial with degree less than the multiplicity of αi;
the coefficients of Pi(n) are elements of the field: Q(α1, . . . , αt).

The recurring sequence (Gn) is called nondegenerate, if no quotient αi/αj

for all 1 ≤ i < j ≤ t is equal to a root of unity.
For the sake of simplicity we shall often restrict ourselves to linear recur-

ring sequences (Gn), where all roots of the characteristic polynomial of (Gn)
are simple, which means that

(4) Gn = c1α
n
1 + c2α

n
2 + · · · + ctα

n
t ,
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for some ci, αi ∈ C. In this case we refer to Gn as to a power sums. The αi

are called the roots and the ci are called the coefficients of the power sums
Gn. If we restrict the roots to come from a multiplicative semigroup A ⊂ C,
then we let EA denote to ring of complex functions on N of the form (4)
where αi ∈ A. Below, A will be usually Z; moreover in that case we define
by E+

Z the subring formed by those functions having only positive roots, i.e.
by the semigroup N. Working in this domain causes no loss of generality:
this assumption may be achieved by written n = 2m + r and considering
the cases r = 0, 1 separately.

We need some information about the structure of the ring of power sums
E+

Z introduced above. In fact, if e.g. two recurrences (Gn) and (Hn) are given
they lie in a much smaller ring, namely in EA where A is the multiplicative
group generated by the roots of Gn and Hn. It is well known (see [25]) and
in fact easy to prove that this ring is isomorphic to the ring

C[T1, . . . , Tt, T
−1
1 , . . . , T−1

t ].

if A has rank t ≥ 1. We simply choose a basis γ1, . . . , γt of A and as-
sociate the variable Ti the function n 7→ γn

i . Hence, it is easy to decide
on arithmetic properties of power sums in the ring of power sums, e.g.
whether (Gn) is some q-th power in EA or whether (Gn) and (Hn) are
coprime (as power sums). This will be important for the results stated below.

Diophantine problems involving linear recurrences (or power sums) have
been widely investigated and have a long tradition. However, a new devel-
opment was started in 1998 by P. Corvaja and U. Zannier, who used the
celebrated Subspace Theorem due to W.M. Schmidt to obtain new results.
The Subspace Theorem has long been known to be crucial in the investiga-
tion of recurrence sequences, but somewhat surprisingly the results collected
in this paper have not appeared before that time.

It is the aim of the present paper to give an overview over these results
and how they are deduced from the Subspace Theorem. This will be done
by first stating an appropriate version of the result and afterward giving a
brief sketch of the proof. Of course we will concentrate on the results where
the author was involved (his work on it started with [12]). Moreover, we
will also show a new result in this direction concerning the G.C.D. of two
power sums both with arbitrarily large order.

Before we start with the results it is worth to spend a few more words
on the Subspace Theorem: we begin with the most simple statement of the
Subspace Theorem which was proved in 1972 and which is a generalisation
to higher dimensions of Roth’s famous theorem, which says that for a real
algebraic number α and for every δ > 0, the inequality

∣

∣

∣

∣

α −
p

q

∣

∣

∣

∣

<
1

q2+δ
,
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has at most finitely many solutions in rational integers p, q.

Theorem 1 (Subspace Theorem, W.M. Schmidt). Suppose L1(x), . . . ,
Ln(x) are linearly independent linear forms in x = (x1, . . . , xn) with al-
gebraic coefficients. Given δ > 0, there are finitely many proper linear sub-
spaces T1, . . . , Tw of Rn such that every integer point x 6= 0 with

|L1(x) · · ·Ln(x)| < ‖x‖−δ ,

where ‖x‖ := max{|xi| : i = 1, . . . , n}, lies in one of these subspaces.

In 1989 Schmidt gave a quantification of this result by giving an explicit
upper bound for the number of subspaces involved in the statement. Before
we can state this result we introduce the notation of absolute values and
heights in number fields.

Let K be an algebraic number field. Denote its ring of integers by OK and
its collection of places by MK . For v ∈ MK , x ∈ K, we define the absolute
value |x|v by

(i) |x|v = |σ(x)|1/[K:Q] if v corresponds to the embedding σ : K ↪→ R;

(ii) |x|v = |σ(x)|2/[K:Q] = |σ̄(x)|2/[K:Q] if v corresponds to the pair of conju-
gate complex embeddings σ, σ̄ : K ↪→ C;

(iii) |x|v = (N℘)−ord℘(x)/[K:Q] if v corresponds to the prime ideal ℘ of OK .
Here N℘ = #(OK/℘) is the norm of ℘ and ord℘(x) the exponent of ℘ in
the prime ideal decomposition of (x), with ord℘(0) := ∞. In case (i) or (ii)
we call v real infinite or complex infinite, respectively; in case (iii) we call v
finite. These absolute values satisfy the Product formula

(5)
∏

v∈MK

|x|v = 1 for x ∈ K\{0}.

We define the K-height of x ∈ K to be

HK(x) =
∏

v∈MK

max{1, |x|v}.

Observe that HQ(x) = |x| (the usual absolute value) for x ∈ Z and that

HL(x) = HK(x)[L:K],

for x ∈ K and for a finite extension L of K.
The height of x = (x1, . . . , xn) ∈ Kn with x 6= 0 is defined as follows: for

v ∈ MK put
|x|v = max

1≤i≤n
|xi|v .

Now define
H(x) =

∏

v∈MK

max{1, |x|v}.

Again, in the special cases x ∈ Zn, we have H(x) = ‖x‖. Moreover, we define
another height H by taking Euclidean norms at the infinite places, namely

H(x) =
∏

v∈MK

|x|v,2,
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where

|x|v,2 =





(

n
∑

i=1

|xi|
2
v

) 1
2





d(v)

for v infinite,

|x|v,2 = |x|v for v finite,

and where d(v) = 1
[K:Q] ,

2
[K:Q] depending on whether v is real infinite or

complex infinite, respectively.
Now Schmidt’s quantitative Subspace Theorem is as follows: consider the

inequality

(6) |L1(x) · · ·Ln(x)| < |det(L1, . . . , Ln)|‖x‖−δ ,

where 0 < δ < 1 and where L1, . . . , Ln are linearly independent linear forms
with coefficients in the number field K. For the set of solutions with

x ∈ Zn, ‖x‖ � max{(n!)8/δ ,H(L1), . . . ,H(Ln)},

where the height of a linear form is the height of its vector of coefficients,
we have the conclusion of Theorem 1 with

w ≤
[

(2d)2
26nδ−2

]

,

where d = [K : Q].
Later on the Subspace Theorem (and also the quantification) was ex-

tended to p-adic numbers and number fields by H.P. Schlickewei. We also
state one version of his result (which follows from Theorem 1D’ in [28], page
178).

Theorem 2 (Subspace Theorem, Schlickewei). Let K be an algebraic num-
ber field and let S ⊂ MK be a finite set of absolute values which contains
all the infinite ones. For v ∈ S, let L1,v, . . . , Ln,v be n linearly independent
linear forms in n variables with coefficients in K. Let δ > 0 be given. Then
the solutions of the inequality

(7)
∏

v∈S

n
∏

i=1

|Li,v(x)|v < H(x)−δ

with x ∈ (OK)n and x 6= 0 lie in finitely many proper subspaces of Kn.

Let us remark that the best version (concerning the dependancy on the
parameters) of the quantitative Subspace Theorem is due to Evertse (cf.
[8]). Recently, Evertse and Schlickewei proved a much more general result
taking into account all algebraic numbers and not only those lying in a
fixed number field (cf. [10, 9]).

Now we come back to Diophantine problems where linear recurrences
are involved. The following results are well known and the most classical
consequences of the Subspace Theorem (they are obtained by the fact that
a recurrence is just a linear combination of a fixed number of S-units): let
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(Gn) be a non-degenerate linear recurrence and assume that also α1, . . . , αt

are not roots of unity. Denote by N(a) for every complex number a the
number of integers n with

Gn = a

(this number is called the a-multiplicity of (Gn)). From the Theorem of
Skolem-Mahler-Lech (cf. [20]) it follows that then N(a) is finite. Schlickewei
[26] proved that if α1, . . . , αt and the coefficients of P1, . . . , Pt generate an
algebraic number field K of degree q, then for every a ∈ K we have

N(a) ≤ q6d2
2228d!

.

Recently, Schmidt proved that for arbitrary non-degenerate linear recur-
rences of complex numbers we have

N(0) ≤ exp(exp(exp(20d)))

(cf. [29, 30]). Moreover, Evertse, Schlickewei and Schmidt [11] proved for
power sums (i.e. simple linear recurrences), where the coefficients and roots
are non-zero complex numbers and where neither α1, . . . , αt, nor any quo-
tient αi/αj (1 ≤ i < j ≤ t) is a root of unity, we have

N(a) ≤ exp
(

(t + 2)(6t)4t
)

for every a ∈ C.
These results show that the Subspace Theorem is a major tool to consider

Diophantine problems with linear recurrences.

The rest of the paper is organized as follows: in Section 2 we show how
the Subspace Theorem can be used to solve the equation Gn = yq and

generalisations as f(G
(1)
n , . . . , G

(d)
n , y) = 0 for power sums. Moreover, we will

consider generalisations of these results to the corresponding Diophantine
inequalities. In Section 3 we will consider the equation Hn = yGn and study
upper bounds for the G.C.D. of two power sums (Gn) and (Hn). In Section
4 we present a new result on the G.C.D. of two power sums and we will give
a complete proof of this result in Section 5.

2. The equation Gn = yq and generalisations

First we deal with Diophantine equations, where linear recurring se-
quences are involved. Such equations were earlier investigated by several
authors, e.g. in the special case

(8) Gn = Eyq, E ∈ Z\{0}

including the question of how many squares are in classical sequences as the
Fibonacci sequence. A survey on this equation can be found in [22, 23] and
in more general form in [13, 17]. The first results have been proved just by
using elementary and algebraic tools. Later, the results were obtained with
the applications of lower bounds for linear forms in logarithms of algebraic
numbers.
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We mention here also Pisot’s q-th root conjecture (cf. [24]), which states
that if all the values of Gn are q-th powers in a given number field K, then
Gn is identically a q-th power of a recurrence. This conjecture was finally
verified by Zannier [32]. However, this result does not solve the question on
the finiteness of the solutions of (8).

Corvaja and Zannier (cf. [3]) were able to attack this problem for power
sums. They considered linear recurrences defined by

(9) Gn = c1α
n
1 + c2α

n
2 + · · · + ctα

n
t ,

where t ≥ 2, c1, c2, . . . , ct are non-zero rational numbers, α1 > α2 > · · · >
αt > 0 are integers. They used the Subspace Theorem to show that for every
integer q ≥ 2 the equation

(10) Gn = yq

has only finitely many solutions (n, y) ∈ N2 assuming that Gn is not iden-
tically a perfect qth power for all n in a suitable arithmetic progression.
Observe that, as remarked in the Introduction, it is easy to decide effec-
tively whether this is the case or not.

Tichy and the author [17] gave a quantitative version of the above result
of Corvaja and Zannier by using the quantitative Subspace Theorem due to
Evertse [8].

Theorem 3 (p. 12, [17]). Let (Gn) ∈ E+
Z be a linear recurring sequence

defined by (9) where t ≥ 2, c1, c2, . . . , ct are nonzero rational numbers, α1 >
α2 > · · · > αt > 0 are integers and such that for given q ≥ 2 there is no
r ∈ {0, . . . , q − 1} with Gmq+r a perfect qth power for all m ∈ N. Then the
number of solutions (n, y) ∈ N2 of the equation

Gn = yq

is finite and can be bounded above by an explicitly computable number de-
pending on q, c1, c2, . . . , ct, α1, . . . , αt.

Sketch of the Proof: We approximate the quantity G
1/q
n by defining

Hm := (c1α
r
1)

1/q · αm
1 ·



1 +

R
∑

j=1

(

1/q

j

)

·

(

t
∑

i=2

ciα
mq+r
i

c1α
mq+r
1

)j


 ,

where R ≥ 1 and where n = mq+r, n ∈ N, r ∈ {0, . . . , q−1}. This quantity

is obtained by using the binomial series for expanding G
1/q
n after putting

first out the dominant root α1 and by truncating this series at the index R.
We write

Hm =

h
∑

i=1

di

(ei

b

)m
,
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where di ∈ Q
(

(c1α
r
1)

1/q
)∗

, ei, b are integers, b > 0, and the ei/b are nonzero
distinct rational numbers. We have obtained an approximation for the so-
lutions ymq+r as linear combination of S-units for a finite set S of absolute
values which we define in a second. From this we can construct a small linear
form with respect to the usual infinite absolute value. This will always be
our main strategy.

Define the linear forms Li,v for v ∈ S = {∞ and primes dividing ei or b}
and i = 1, . . . , h as follows:

L0,∞ := X0 −
h
∑

i=1

diXi and Li,v := Xi

for (i, v) 6= (0,∞). Applying the Subspace Theorem (Theorem 2) now yields
the result by a standard argument (see also the end of the proof in Section
5). �

Later on, Corvaja and Zannier [4] generalized their result (in fact for
power sums defined over Q this result was already contained in [3]). Let K be
an algebraic number field and let (Gn) be a non-degenerate linear recurring
sequence defined by (4) where t ≥ 2, ci are non-zero elements of K for all
i = 2, . . . , t and where α1, . . . , αt are elements of K with 1 6= |α1| > |αj | for
all j = 2, . . . , t. Let f(x, y) ∈ K[x, y] be monic in y and suppose that there
do not exist non-zero algebraic numbers dj, βj for j = 1, . . . , k such that

(11) f

(

Gn,

k
∑

j=1

djβ
n
j

)

= 0

for all n in an arithmetic progression. Then the number of solutions (n, y) ∈
N × K of the equation

(12) f(Gn, y) = 0

is finite. The author [13] gave a quantitative version of this result, which is
a little bit more general in the assumptions.

Theorem 4 (p. 236, [13]). Let K be an algebraic number field and let (Gn)
be a linear recurring sequence defined by

Gn = λ1α
n
1 + P2(n)αn

2 + · · · + Pt(n)αn
t ,

where t ≥ 2, λ1 is a non-zero element of K, Pi(x) ∈ K[x] for all i = 2, . . . , t
and where α1, . . . , αt are elements of K with 1 6= |α1| > |αj | for all j =
2, . . . , t. Let f(x, y) ∈ K[x, y] be monic in y and suppose that there do not
exist non-zero algebraic numbers βj and polynomials dj(n) ∈ K̄[n] for j =
1, . . . , k such that

f

(

Gn,

k
∑

j=1

dj(n)βn
j

)

= 0
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for all n in an arithmetic progression. Then the number of solutions (n, y) ∈
N × K of the equation

f(Gn, y) = 0

is finite and can be bounded by an explicitly computable number C depending
on f and on the coefficients and the initial values of the recurrence.

Sketch of the Proof: We work only in the case |α1| > 1 and consider the
Puiseux expansion at x = ∞ of the solution y = y(x) of f(x, y) = 0.

Now by Puiseux’s Theorem we can conclude that

f(x, y) =
∏

j,i

(y − yij),

where

yij =
∞
∑

k=vi

aikζ
jk

(

1

x

) k
ei

,

for j = 0, . . . , ei − 1, i = 1, 2, . . . , r. Therefore for each solution (n, yn) of
(12) we get

(13) yn =

∞
∑

k=v

βkG
− k

e
n ,

for some v, e and βk, which lie in a fixed finite extension of K.
We have the binomial expansion

G
− k

e
n = λ

− k
e

1 α
− kn

e

1

∞
∑

r=0

(

−k
e

r

)

(

t
∑

i=2

Pi(n)

λ1

(

αi

α1

)n
)r

,

for some choice of the eth roots of λ1 and α1. Thus we can approximate yn

by a finite sum extracted from the Puiseux expansion (13), namely by

Hn :=

H
∑

k=v

βkλ
− k

e

1 α
− kn

e

1

H
∑

r=0

(

−k
e

r

)

(

t
∑

i=2

Pi(n)

λ1

(

αi

α1

)n
)r

,

where H ≥ 1 is an integer to be chosen later.
As before this leads to one small linear form with respect to the usual

absolute value. All other linear forms are again the trivial projections. They
are small because the expression above is again a linear combination of
S-units. The result follows from the Subspace Theorem. �

Scremin [31] proved the following result which is related to what we con-
sider here (in fact it is a consequence on his related result on the Diophantine
inequality which we will mention below). Let f(x, y) ∈ Q[x, y] be monic in
y, absolutely irreducible and of degree d ≥ 2 in y; let g(n) ∈ Z[x] be a non
constant polynomial; let Gn ∈ QEZ not constant. Then the equation

f(Gn, y) = g(n)
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has only finitely many solutions (n, y) ∈ N × Z.

Recently, Scremin and the author [15] generalised these results to the
equation

(14) G(0)
n yd + . . . + G(d−1)

n y + G(d)
n = 0.

First we need some notation. Let d ≥ 2 be an integer and let G
(0)
n , . . . , G

(d)
n ∈

QE+
Z , i.e. we have

G(0)
n = a

(0)
1 α

(0)n

1 + a
(0)
2 α

(0)n

2 + . . . + a
(0)

t(0)
α

(0)n

t(0)
,

...

G(d)
n = a

(d)
1 α

(d)n

1 + a
(d)
2 α

(d)n

2 + . . . + a
(d)

t(d)α
(d)n

t(d) ,

where a
(j)
i are algebraic and α

(j)
i are positive integers such that α

(j)
1 > α

(j)
2 >

. . . > α
(j)

t(j)
for all i = 1, . . . t(j) and j = 0, . . . , d.

Let f(x0, . . . , xd, y) = x0y
d + . . . + xd−1y + xd. So the above equation

becomes

f(G(0)
n , . . . , G(d)

n , y) = 0.

We will show how to this equation another equation in some normal form
can be associated. First, we set (for a positive real determination of the
roots)

α := max
i=1,...,d

(

α
(i)
1

α
(0)

d−i
d

1

)
1
i

.

Moreover, let

y =
αn

α
(0)

n
d

1

z.

Then consider

(15)
1

αdn
f

(

G(0)
n , . . . , G(d)

n ,
αn

α
(0)

n
d

1

z

)

.

This is a polynomial in z with coefficients in QEA, where A is the multi-
plicative group generated by

α, α
(0)

1
d

1 and the roots of G(0)
n , . . . , G(d)

n ,

i.e. the coefficients of this polynomial are again power sums. Observe that
all the roots which appear in these power sums are ≤ 1, because of our
construction and that one of the roots which appears as coefficient of zd is 1.
Let γ1, . . . , γr denote the different roots of these power sums (the coefficients
of (15) as a polynomial in z), which are strictly less than 1. We identify the
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expressions γn
i in (15) by a new variable xi. Therefore we get a polynomial

(linear in x1, . . . , xr) g(x1, . . . , xr, z) ∈ Q[x1, . . . , xr, z] such that

g(γn
1 , . . . , γn

r , z) =
1

αdn
f

(

G(0)
n , . . . , G(d)

n ,
αn

α
(0)

n
d

1

z

)

.

This polynomial is some kind of normal form for our equation under

consideration. We denote by D(G
(1)
n , . . . , G

(d)
n ) the discriminant of g with

respect to z evaluated at (0, . . . , 0).

We are now able to formulate our next result, which states that the equa-
tion (14) has only finitely many solutions in integers, apart from “trivial”
cases which can be classified and which come from functional identities in
the ring of power sums.

Theorem 5 (p. 154, [15]). Let d ≥ 2 and let G
(0)
n , . . . , G

(d)
n ∈ QE+

Z . Assume
that

(16) D(G(1)
n , . . . , G(d)

n ) 6= 0.

Then there exist finitely many recurrences H
(1)
n , . . . ,H

(s)
n with algebraic coef-

ficients and algebraic roots, arithmetic progressions P1, . . . ,Ps, and a finite
set N of integers, such that for the set S of solutions (n, y) ∈ N × Z of the
equation

f(G(0)
n , . . . , G(d)

n , y) = G(0)
n yd + . . . + G(d−1)

n y + G(d)
n = 0

we have

S =

s
⋃

i=1

{(n,H(i)
n ) : n ∈ Pi} ∪ {(n, y) : n ∈ N , y ∈ Z} ∪ M,

where M is a finite set.

Sketch of the Proof: The solutions (n, yn) of the equation give rise to so-
lutions (n, zn) of the equation g(γn

1 , . . . , γn
r , zn) = 0. We consider infinitely

many solutions (n, zn) where n ∈ Σ and Σ is a sequence of positive inte-
gers. From the construction of g it follows that the sequence (zn) must be
bounded and therefore lie in some neighbourhood of the solutions of

g(0, . . . , 0, z) = 0,

at least if n is large enough.
By a suitable version of the Implicit Function Theorem we conclude

z = z0 +
∑

|i|>0

aix
i1
1 . . . xir

r

where i = (i1, . . . , ir), |i| := |i1 + . . . + ir| and with ai ∈ Q, where z0 satisfies
g(0, . . . , 0, z0) = 0.
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Therefore for each solution (n, zn) we get

zn = z0 +
∑

|i|>0

aiγ
i1n
1 . . . γirn

r ,

for some z0 and coefficients ai, and if n is large enough. Next we approximate
zn by

Vn := z0 +
∑

0<|i|<H

aiγ
i1n
1 . . . γirn

r .

So, again we have an approximation for the solutions as a linear combination
of S-units for a certain set S, which in turn leads to a small linear form.
The result follows as before by applying the Subspace Theorem. �

Now we turn our interest to Diophantine inequalities. Corvaja and Zannier
proved in their paper [3] in 1998 also the following result: let Gn = c1α

n
1 +

c2α
n
2 + · · · + ctα

n
t , where t ≥ 2, c1, c2, . . . , ct are non-zero rational numbers,

α1 > α2 > · · · > αt > 0 are integers. Then for fixed ε > 0 and every integer

q ≥ 2 there exist power sums H
(1)
n , . . . ,H

(s)
n ∈ QE

Q
such that all solutions

(n, y) ∈ N × Z of the Diophantine inequality

|yq − Gn| � |Gn|
1− 1

d
−ε

apart from finitely many, satisfy y = H
(i)
n for a certain i = 1, . . . , s. As

an immediate consequence, for every q ≥ 2 the equation Gn = yq has
only finitely many solutions, if we suppose that α1, α2 are coprime. It is
easy to see that the upper bound is best possible; if we remove ε then the
conclusion is no longer true.

Scremin [31] studied lower bounds for the quantity |f(Gn, y)|, where
f(x, y) ∈ Q[x, y] is absolutely irreducible, monic and of degree d ≥ 2 in
y. He proved the following generalisation of the result of Corvaja and Zan-
nier, namely that for Gn ∈ QEZ and for fixed ε > 0 there exists a finite set

of power sums H
(1)
n , . . . ,H

(s)
n ∈ E+

Z such that every solution (n, y) ∈ N × Z,
apart from finitely many, of the Diophantine inequality

∣

∣

∣
f(Gn, y)

∣

∣

∣
<

∣

∣

∣

∣

∂f

∂y
(Gn, y)

∣

∣

∣

∣

· |Gn|
−ε

satisfies y = H
(i)
n for a certain i = 1, . . . , s.

Scremin and the author again went a step further and considered a gen-
eralisation of the equation (14) to the case of inequalities. They proved:

Theorem 6 (p. 168, [16]). Let d ≥ 2, G
(1)
n , . . . , G

(d)
n ∈ QE+

Z . Let f(x1, . . . ,
xd, y) be monic in y. Assume that

D(G(1)
n , . . . , G(d)

n ) 6= 0.
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Finally, let ε > 0. Then there exist finitely many recurrences H
(1)
n , . . . ,

H
(s)
n ∈ QEQ such that all but finitely many solutions (n, y) ∈ N × Z of

the Diophantine inequality
∣

∣

∣

∣

f(G(1)
n , . . . , G(d)

n , y)

∣

∣

∣

∣

< αn(d−1−ε),

have y = H
(i)
n for some i = 1, . . . , s. Moreover, the set of natural numbers

n such that (n, y) is a solution of the inequality is the union of a finite set
and a finite number of arithmetic progressions.

Sketch of the Proof: Since D(G
(1)
n , . . . , G

(d)
n ) 6= 0, we conclude by the Implicit

Function Theorem that

g(x1, . . . , xr, z) = (z − ϕ1) · . . . · (z − ϕd)

with

ϕ1(x1, . . . , xr) =
∑

|i|≥0

ai,1x
i1
1 · · · xir

r ,

...

ϕd(x1, . . . , xr) =
∑

|i|≥0

ai,dx
i1
1 · · · xir

r

where ai,j ∈ Q, zi := a0,i, i = 1, . . . , d satisfy g(0, . . . , 0, zi) = 0. For each
solution (n, z) we get that

z − ϕj(γ
n
1 , . . . , γn

r ) = z −
∑

|i|≥0

ai,jγ
i1n
1 · · · γirn

r

is small for some j = 1, . . . , d and if n is large enough. Here we need that
|z| ≤ cαn for some constant c. All solutions which do not satisfy this trivially
fulfill our conclusion (see [16, Proposition 1]).

We consider the sets for j = 1, . . . , d

Mj =

{

(n, z) : |z − ϕj | = min
i=1,...,d

{|z − ϕi|}

}

.

Without loss of generality, we assume (n, z) ∈ M1. For (n, z) ∈ M1 we now
consider

∣

∣

∣
g(γn

1 , . . . , γn
r , z)

∣

∣

∣
= |z − ϕ1| |z − ϕ2| · · · |z − ϕd|.

First we calculate the contribution of the “big” terms. We have

|z − ϕ2| · · · |z − ϕd| ≥

(

1

3
min

i=2,...,d
{|zi − z1|}

)d−1

.
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Now we consider the small term |z − ϕ1|. We are going to approximate z
by a finite sum extracted from

ϕ1 = z0 +
∑

|i|>0

ai,1γ
i1n
1 · · · γirn

r =

= z0 +
∑

0<|i|≤H

ai,1γ
i1n
1 · · · γirn

r + O (γn) .

We define

Vn := z0 +
∑

0<|i|≤H

ai,1γ
i1n
1 · · · γirn

r ,

and use the Subspace Theorem to show

|z − ϕ1| > C1α
−C2n,

where C1, C2 are certain constants, for all n outside of finitely many
subspaces. From this the result follows in the usual way. �

Observe that in [16] we did not use the Subspace Theorem directly to get
the last result. Instead we used a technical result by Corvaja and Zannier
[5, Theorem 4] which is itself a consequence of the Subspace Theorem.

The main restriction in all these results is that we have to assume the
existence of a simple dominant root. Of course we conjecture that the results
are true without this assumption. This is the major open problem in this
subject area.

3. The equation Hn = yGn and the G.C.D. of Gn,Hn

At first sight this case seems to be much easier then the equations studied
in the previous section. In fact it is possible to completely solve this equation.
Also other more general questions, as on the G.C.D. of Gn,Hn, are of interest
and can be answered (at least partially).

In order to motivate what is going on in this case we mention the
so-called Hadamard Quotient theorem (proved by van der Poorten, cf. [25]),
which says that if (Gn), (Hn) ∈ E+

Z , then Hn/Gn ∈ Z for all n ∈ N can only

hold, if there is a recurring sequence (In) ∈ E+
Z such that Hn = Gn · In for

all n ∈ N. Roughly speaking this means that the quotient may have values
in Z for all n ∈ N only when this is obvious, in the sense that it comes from
an identical relation.

Corvaja and Zannier showed by using the Subspace Theorem a stronger
result. They proved that if (Gn), (Hn) are as above and if Hn = yGn

has infinitely many solutions (n, y) ∈ N × Z then there exists a recurring
sequence (In) such that Hn = Gn · In for all n ∈ N. Thus again, the
infinitude of solutions can be explained by a function relation in the ring of
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power sums. This result can be found in [3].

Let us mention that in a very recent paper, Corvaja and Zannier solved
this question in complete generality (i.e. for arbitrary linear recurrences (Gn)
and (Hn); cf. [4]). They proved:

Theorem 7 (Corvaja and Zannier). Let (Gn), (Hn) be linear recurrences
and let R be a finitely generated subring of C. Assume that for infinitely
many n ∈ N, we have Gn 6= 0 and Hn/Gn ∈ R. Then there exist a nonzero
polynomial P (X) ∈ C[X] and positive integers q, r such that both sequences
n 7→ P (n)Hqn+r/Gqn+r and n 7→ Gqn+r/P (n) are linear recurrences.

The main problem in the proof was to get rid of the notorious dominant
root condition and this was done by an ingenious application of the
Subspace Theorem. They achieved this in the following way: first it is still
possible to approximate Hn/Gn by using simultaneously all the roots with
maximal absolute value; then they constructed several other small linear
forms, out from the first one by multiplying the given small linear form
by suitable powers of monomials in the dominant roots. We do not go
more into details, since the proof of our original result in this paper follows
essentially this line of proof, so we refer to Section 5.

Bugeaud, Corvaja and Zannier [1] used the Subspace Theorem to ob-
tain more explicit results, bounding the cancellation in the fraction Hn/Gn,
which is represented by the G.C.D. of Gn and Hn. In fact they showed
that, if a, b are integers ≥ 2, and b is not a power of a, then, provided n is
sufficiently large, we have

(17) G.C.D.(an − 1, bn − 1) � a
n
2 .

The number 1/2 in the exponent is best-possible, in view of the example
a = c2, b = cs, for odd s.

In the case, when a and b are multiplicatively independent, they proved
a sharper bound: Let ε > 0. Then, provided n is sufficiently large, we have

(18) G.C.D.(an − 1, bn − 1) < exp(εn).

This result is remarkable, especially because it was the first time that in
the proof not only one but several small linear forms were used to which
the Subspace Theorem was applied afterwords (see the sketch of the proof
of Theorem 9).

Bugeaud, Corvaja and Zannier remarked that their method holds in a
more general context. Taking this into account the author [14] proved the
following result:

Theorem 8 (p. 23, [14]). Let (Gn) and (Hn) be linear recurring sequences
of integers defined by Gn = c1α

n
1 +c2α

n
2 + · · ·+ctα

n
t and Hn = d1β

n
1 +d2β

n
2 +

· · · + dsβ
n
s , where t, s ≥ 2, ci, dj are non-zero complex numbers and where
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α1 > · · · > αt > 0, β1 > · · · > βs > 0. Furthermore we assume that Gn does
not divide Hn in the ring E+

Z . Then, provided n > C1, we have

G.C.D.(Gn,Hn) < |Gn|
c,

for all n aside of a finite set of exceptions, which can be bounded by C2,
where C1, C2 and c < 1 are effectively computable numbers depending on the
ci, dj , αi and βj, i = 1, . . . , t, j = 1, . . . , s.

Sketch of the Proof: Write

z(n) =
Hn

Gn
=

cn

dn
,

where cn, dn are nonzero integers. We show that

|dn| ≤ |Gn|
1−c

can hold for n > C1 only for a finite number of n, whose cardinality can be
bounded by C2. From this the result will follow.

We expand G−1
n and approximate z(n) by the power sum

z̃(n) := Hn ·
1

c1αn
1

h
∑

j=0

(−1)j

(

t
∑

i=2

ci

c1

(

αi

α1

)n
)j

,

where h ≥ 1 is an integer. Now an application of the Subspace Theorem
proves the result. �

Moreover, we get the following better result for “coprime” power sums
(Gn) and (Hn) where (Hn) is of arbitrary large order:

Theorem 9 (p. 25, [14]). Let (Gn) and (Hn) be linear recurring sequences
of integers defined by Gn = c1α

n + c2 and Hn = d1β
n
1 + d2β

n
2 + · · · + dsβ

n
s ,

where s ≥ 2, ci, dj are non-zero complex numbers and where α > 1, β1 >
· · · > βs > 0 are integers with α, β1β2 · · · βs coprime. Furthermore, let ε > 0.
Then, provided n > C1, we have

G.C.D.(Gn,Hn) < |Gn|
ε,

for all n aside of a finite set of exceptions, whose cardinality can be bounded
by C2, where C1, C2 are effectively computable numbers depending on the
ci, dj , α, βj , i = 1, 2, j = 1, . . . , s and ε.

Sketch of the Proof: We fix a k and let

J = {j = (j1, . . . , js) : j1 + . . . + js = k}

For every j ∈ J , we define

Hj,n = βnj (d1β
n
1 + d2β

n
2 + . . . + dsβ

n
s ) .

We write

zj(n) =
Hj,n

Gn
=

cj,n

dn
,

where cj,n, dn are integers.
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Now we define

φj(n) := zj(n) − Hj,n ·
h
∑

i=1

(−1)i−1 ci−1
2

ci
1

α−ni =

= zj(n) − βj1n
1 · · · βjsn

s

h
∑

i=1

s
∑

l=1

(−1)i−1dl
ci−1
2

ci
1

βn
l α−ni,

for every index j = (j1, . . . , js) with j1 + . . .+js = k. We apply the Subspace
Theorem by considering several “small” linear forms coming from the above
approximation of the values zj(n) for all j ∈ J with k large enough (the
above approximations were obtained by expanding G−1

n in the definition of
zj(n) above).

Finally, this second parameter k can be chosen in such a way, that the
theorem follows by an application of the Subspace Theorem. �

Let us mention some very recent generalisations of these type of results.
Corvaja and Zannier proved (in [6]) that for every fixed ε > 0 the inequality

G.C.D.(u − 1, v − 1) < (max{|u|, |v|})ε

holds for all pairs of multiplicatively independent S-units u, v ∈ Z for a finite
set of absolute values including the infinite ones. We remark that this result
was used to confirm a conjecture of Győry, Sárközy and Stewart from [19]
(for further results in this direction see also [18, 2]). In [7] they generalised
this statement for other pairs of rational functions then u − 1, v − 1 and gave
a reformulation in the language of heights in order to get an extension to
number fields. Their results imply that if p(x, y), q(x, y) ∈ Q[x, y] are non-
constant coprime polynomials and suppose that not both of them vanish at
(0, 0) and let a, b be multiplicatively independent integers. Then for every
ε > 0 we have that

G.C.D.(p(an, bn), q(an, bn)) < exp(εn)

for all n large enough.
In [21] Luca studied the G.C.D.(u − 1, v − 1) where u, v ∈ Z are “near”

S-units. His result implies that if f(x), f1(x), g(x), g1(x) are non-zero poly-
nomials with integer coefficients and a, b are multiplicatively independent
integers as before, then for every ε > 0 the inequality

G.C.D.(f(n)an + g(n), f1(n)bn + g1(n)) < exp(εn)

holds for all n large enough.
Both results were obtained by using the ideas from [1].

4. New result on the G.C.D.

The aim of this section is to present a new result which is a generalisation
of Theorem 9 to the case where also Gn is a power sums of arbitrarily large
order. The proof uses again the Subspace Theorem but in a more involved
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way with several nontrivial small linear forms (also with respect to different
absolute values).

The main result is the following theorem:

Theorem 10. Let (Gn) and (Hn) be linear recurring sequences of integers
defined by Gn = c1α

n
1 +c2α

n
2 + · · ·+ctα

n
t and Hn = d1β

n
1 +d2β

n
2 + · · ·+dsβ

n
s ,

where t, s ≥ 2, ci, dj are non-zero rational numbers and where α1 > · · · >
αt > 0, β1 > · · · > βs > 0 are integers with α1, α2 · · ·αtβ1 · · · βs coprime.
Furthermore, let ε > 0. Then, we have

G.C.D.(Gn,Hn) < exp(εn)

for all n large enough.

This theorem includes examples as

G.C.D.(2n + 3n, 5n + 7n) < exp(εn),

for all n large enough, which seem not to be covered by the previous results
mentioned above.

Remark 1. The condition α1, α2 · · ·αtβ1 · · · βs coprime assure that the
sequences (Gn) and (Hn) are coprime as elements in the ring of power sums
E+

Z .

Remark 2. In the proof we use once again (as in the proof of [14, Theorem
2]) several small linear forms for the application of the Subspace Theorem.
In fact the proof uses even more from the proof by Corvaja and Zannier of
the main result in [4]. Moreover, we use nontrivial linear forms not only for
one absolute value, but for several absolute values.

Remark 3. Of course it is possible, by using quantitative versions of the
Subspace Theorem (e.g. due to Evertse [8]), to give the following more pre-
cise statement. There are explicitly computable positive constants C1, C2

such that the claimed inequality is true for all n > C1 with finitely many
exceptions whose cardinality can be bounded by C2.

5. Proof of Theorem 10

For the reader’s convenience we state a version of the Subspace Theorem
due to Schlickewei in a simplified version which is enough for our application:

Proposition 1 (Subspace Theorem). Let S be a finite set of absolute val-
ues of Q, including the infinite one and normalized in the usual way (i.e.
|p|v = p−1 if v|p). Extend each v ∈ S to Q in some way. For v ∈ S let
L1,v, . . . , LN,v be N linearly independent linear forms in N variables with al-

gebraic coefficients and let δ > 0. Then the solutions x := (x1, . . . , xN ) ∈ ZN
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to the inequality

∏

v∈S

N
∏

i=1

|Li,v(x)|v < ‖x‖−δ ,

where ‖x‖ := max{|xi| : i = 1, . . . , N}, are contained in finitely many proper
subspaces of QN .

This theorem follows from [28, Theorem 1E, p. 178] (but a complete
proof requires also [27]).

In the sequel let C1, C2, . . . denote positive numbers depending only on
ci, dj , αi and βj , i = 1, . . . , t, j = 1, . . . , s and ε.

First observe that by [14, Lemma 2] it follows that Gn = 0 can only hold
for finitely many n. So, we will exclude this case in the further considerations.

We now write

zn =
Hn

Gn
=

cn

dn
,

where cn, dn are nonzero integers. Thus we have

G.C.D.(Gn,Hn) · dn = Gn.

We suppose that

(19) dn ≤ α
(1−ε)n
1

for infinitely many n and we proceed to derive a contradiction which clearly
proves

G.C.D.(Gn,Hn) ≤ C1α
εn
1

from which our claim follows.

Now, let us denote by p1, . . . , pr the different prime divisors of α1. By our
assumption that α1 is coprime to α2 · · ·αtβ1 · · · βs it follows that

(20) 1 = |α2|pi
= . . . = |αt|pi

= |β1|pi
= . . . = |βs|pi

> |α1|pi

for all i = 1, . . . , r.

We fix a positive integer f and write

(a2α
n
2 + . . . + atα

n
t )f

= (Gn − a1α
n
1 )f = Gn

(

f−1
∑

i=0

(

f

i

)

Gf−1−i
n (−1)iai

1α
in
1

)

+ (−1)faf
1αfn

1 .

This implies

r
∏

i=1

∣

∣

∣

∣

∣

(a2α
n
2 + . . . + atα

n
t )f zn − Hn

f−1
∑

i=0

(

f

i

)

Gf−1−i
n (−1)iai

1α
in
1

∣

∣

∣

∣

∣

pi

≤ C2α
(1−f)n
1 .
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Observe that it is clear that
r
∏

i=1

|zn|pi
≤

r
∏

i=1

|Gn|
−1
pi

≤ |Gn| ≤ C1α
n
1 ,

since by the product formula we have

∏

p∈P

|x|p · |x| = 1 =⇒ |x| =
∏

p∈P

|x|−1
p ≥

r
∏

i=1

|x|−1
pi

for all rational integers x.

We now fix two other positive integers h, k; later on we shall impose that
f, h, k satisfy suitable inequalities.

Let us denote by J = {j = (i2, . . . , it, j1, . . . , js) ∈ Nt−1+s : i2+. . .+it ≤
h, j1 + . . .+ js ≤ k}. If we write ji we mean the i-th vector in J with respect
to the lexicographical ordering. The cardinality of J is given by

M := |J | =

(

t − 1 + h
t − 1

)(

s + k
s

)

.

For every j ∈ J we consider the quantity

φj(n) := (a2α
n
2 + . . . + atα

n
t )f αi2n

2 · · ·αitn
t βj1n

1 · · · βjsn
s zn

−αi2n
2 · · ·αitn

t βj1n
1 · · · βjsn

s Hn

f−1
∑

i=0

(

f

i

)

Gf−1−i
n (−1)iai

1α
in
1 .

By the above inequality and (20) we have

(21)

r
∏

i=1

|φj(n)|pi
≤ C2α

(1−f)n
1

for all j ∈ J .

Now, let S be a set of absolute values of Q containing the infinite absolute
value and all primes dividing α1 or α2 · · ·αtβ1 · · · βs. Especially, it contains
the primes p1, . . . , pr. Moreover, we put

N1 :=

(

t − 1 + f + h
t − 1

)(

s + k
s

)

and

N2 := f

(

t − 1 + f + h
t − 1

)(

s + k + 1
s

)

.

Finally, set N := N1 + N2. Observe that N1 denotes the number of possible
quantities of the form

αi2
2 · · ·αit

t βj1
1 · · · βjs

s zn
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with i2 + . . . + it ≤ f + h and j1 + . . . + js ≤ k, whereas N2 denotes the
number of possible different quantities of the form

αi1
1 αi2

2 · · ·αit
t βj1

1 · · · βjs
s

with i1 < f, i2 + . . . + it ≤ f + h, j1 + . . . + js ≤ k + 1. In particular, we
can write φj(n) as a linear combination of at most N nonzero terms of the
mentioned types. Let us choose an ordering (in such a way that the first N1

terms are those quantities involving zn) for the above quantities and denote
the terms with x1(n), . . . , xN1(n), xN1+1 . . . , xN (n). Thus we can write

φj(n) = Aj,1x1(n) + . . . + Aj,NxN (n)

for every j ∈ J .

We denote by

xn = dn(x1(n), . . . , xN (n)) ∈ ZN1+N2

(remember that dn was the denominator of zn).

We define for every v ∈ S, N linearly independent linear forms in X =
(X1, . . . , XN ) as follows: for i ≤ M < N1 and for all j = 1, . . . , r put

Li,pj
(X) = Aji,1X1 + . . . + Aji,NXN ;

for all other pairs (j, v) ∈ {1, . . . , N} × S we set

Lj,v(X) = Xj .

We want to apply the Subspace Theorem with this choice of the linear forms.
Observe that for fixed v ∈ S the linear forms L1,v, . . . , LN,v are linearly
independent: this is clear for v 6= pj, j = 1, . . . , r and for v = pj we have
that

Li,pj
(x1(n), . . . , xN (n)) = dnφji(n)

for i ≤ M . In order to prove that L1,pj
, . . . , LM,pj

, XM+1, . . . , XN

are linearly independent it suffices to show this for L1,pj
(x1(n),

. . . , xN1(n), 0, . . . , 0), . . . , LM,pj
(x1(n), . . . , xN1(n), 0, . . . , 0). But in this case

we have

Li,pj
(x1(n), . . . , xN1(n), 0, . . . , 0)

= (a2α
n
2 + . . . + atα

n
t )f αi2n

2 · · ·αitn
t βj1n

1 · · · βjsn
s cn,

where ji = (i2, . . . , it, j1, . . . , js) ∈ J . It is plain (again e.g. by [14, Lemma
2]) that a linear relation of such quantities holds for at most finitely many n.

We now consider the double product defined by the previously defined
linear forms and vectors, namely

(22)
∏

v∈S

N
∏

i=1

|Li,v(xn)|v .
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This product can be rewritten as

N
∏

i=M+1

∏

v∈S

|Li,v(xn)|v ·
M
∏

i=1

∏

v∈S\{p1,...,pr}

|Li,v(xn)|v ·
M
∏

i=1

r
∏

j=1

|Li,pj
(xn)|pj

.

We will first handle each of these double products separately.
First, we have for i > N1 that

∏

v∈S

|Li,v(xn)|v =
∏

v∈S

|dnαi1n
1 αi2n

2 · · ·αitn
t βj1n

1 · · · βjsn
s |v ≤ dn,

where i1, i2, . . . , it, j1, . . . , js are suitable integers. Observe that we
have used our choice of S and the product formula to obtain
∏

v∈S |αi1n
1 αi2n

2 · · ·αitn
t βj1n

1 · · · βjsn
s |v = 1. For M < i ≤ N1 we have

∏

v∈S

|Li,v(xn)|v =
∏

v∈S

|cnαi2n
2 · · ·αitn

t βj1n
1 · · · βjsn

s |v ≤ cn ≤ Hn ≤ C3β
n
1 ,

where we used the choice of S and the product formula once again.
Further, for i ≤ M we have

∏

v∈S\{p1,...,pr}

|Li,v(xn)|v =
∏

v∈S\{p1,...,pr}

|cn|v ≤ cn ≤ Hn ≤ C3β
n
1 ,

where we have used that xi(n) = dnαi2n
2 · · ·αitn

t βj1n
1 · · · βjsn

s zn and dnzn = cn

(as also just before).
Finally, in view of (21), we have for i ≤ M that

r
∏

j=1

|Li,pj
(xn)|pj

=

r
∏

j=1

|dnφji(n)|pj
≤

r
∏

j=1

|φji(n)|pj
≤ C2α

(1−f)n
1 .

Observe that
r
∏

j=1

|dn|pj
≤ 1,

since dn is an integer.
Plugging these estimates into (22), we finally obtain

∏

v∈S

N
∏

i=1

|Li,v(xn)|v ≤ C4d
N2
n βnN1

1 α
(1−f)Mn
1 .

Recall that we are assuming dn ≤ α
(1−ε)n
1 . Consequently,

(23)
∏

v∈S

N
∏

i=1

|Li,v(xn)|v ≤ C4

(

α
(1−ε)N2+N1C5+(1−f)M
1

)n
.
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Now we choose k, f and at the end h to assure that the exponent of α1 in
this equation is < 0. Observe that

(1 − ε)N2 + N1C5 + (1 − f)M(24)

= (1 − ε)f

(

t − 1 + f + h
t − 1

)(

s + k + 1
s

)

−f

(

t − 1 + h
t − 1

)(

s + k
s

)

+

[

C5

(

t − 1 + f + h
t − 1

)

+

(

t − 1 + h
t − 1

)](

s + k
s

)

.

Since the function
(a+x

a

)

is a polynomial in x of degree a, we consider first the
above quantity as a polynomial in h. The leading coefficient is a polynomial
in f whose leading coefficient is a constant multiple (where the positive
constant is 1

(t−1)! and therefore just depends on t) of

(25) (1 − ε)

(

s + k + 1
s

)

−

(

s + k
s

)

,

which is smaller then zero if we choose

k >
(1 − ε)s − ε

ε
.

Afterwords we choose f so large that the coefficient of ht−1 in (24) is nega-
tive, and finally we choose h so large that (24) is negative as a whole.

Observe that (as in [4, p. 444]) this inequality is the crucial point of
the method to work; it says that in the vector xn the number of coordinates
which are S-integral and not S-units, i.e. those involving zn, is not too large.

Finally, we get that

(26)
∏

v∈S

N
∏

i=1

|Li,v(xn)|v ≤ C4C
n
6 ,

where C6 < 1 is a suitable positive constant independent of n, for infinitely
many n.

In order to apply the Subspace Theorem we need an upper bound for
‖xn‖ which is easily obtained by

‖xn‖ ≤ C7α
(f+h)n
1 β

(k+1)n
1 = C7C

n
8 .

The verification of the inequality in the Subspace Theorem (Proposition 1)
follows now from

C4C
n
6 < (C7C

n
8 )−δ ,

which follows for small enough δ (such that C6C
δ
8 < 1) if n is large enough.
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Now, from the Subspace Theorem (in the form of Proposition 1) it follows
that there is a nontrivial linear relation of the form

A1x1(n) + . . . + ANxN (n) = 0

with A1, . . . , Ad ∈ Q, not all zero, valid for infinitely many n. Thus we obtain
a relation of the form znUn = Vn, where

Un =
∑

j∈J

ujα
i2n
2 · · ·αitn

t βj1n
1 · · · βjsn

s

is a power sum with roots in the group generated by α2, . . . , αt, β1, . . . , βs and
Vn is a power sum with roots in the group generated by α1, . . . , αt, β1, . . . , βs.
Observe that (again by [14, Lemma 2]) Un and Vn must be nontrivial power
sums, because if all coefficients in Vn are equal to zero, then there are finitely
many possibilities for n only, and the same is true if all coefficients in Un

are zero. Recall that by definition zn = Hn/Gn, thus we have

HnUn = GnVn.

Since Gn and Hn are coprime (these follows from [14, Lemma 3]), we con-
clude that Gn divides Un in the ring of power sums. This is a contradiction
since in Gn there is a root (namely α1) which is coprime to all roots of Un

and to all other roots of Gn. This contradiction completes our proof. �

References

[1] Y. Bugeaud, P. Corvaja and U. Zannier, An upper bound for the G.C.D. of
an

− 1 and bn
− 1, Math. Zeitschrift 243 (2003), 79-84.

[2] Y. Bugeaud and F. Luca, A quantitative lower bound for the greatest prime factor
of (ab + 1)(bc + 1)(ca + 1), Acta Arith. 114 (2004), 275-294.

[3] P. Corvaja and U. Zannier, Diophantine equations with power sums and universal
Hilbert sets, Indag. Math., New Ser. 9 (3) (1998), 317-332.

[4] P. Corvaja and U. Zannier, Some new applications of the Subspace Theorem,
Compos. Math. 131 (2002), no. 3, 319-340.

[5] P. Corvaja and U. Zannier, Finiteness of integral values for the ratio of two linear
recurrences, Invent. Math. 149 (2002), 431-451.

[6] P. Corvaja and U. Zannier, On the greatest prime factor of (ab+1)(ac+1), Proc.

Amer. Math. Soc. 131 (2003), 1705-1709.
[7] P. Corvaja and U. Zannier, A lower bound for the height of a rational function

at S-unit points, Monatsh. Math. 144 (2005), 203-224.
[8] J.-H. Evertse, An improvement of the Quantitative Subspace Theorem, Compos.

Math. 101 (3) (1996), 225-311.
[9] J.-H. Evertse and H.P. Schlickewei, The Absolute Subspace Theorem and linear

equations with unknowns from a multiplicative group, Number Theory in Progress
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