DIOPHANTINE INEQUALITIES INVOLVING SEVERAL
POWER SUMS

CLEMENS FUCHS* AND AMEDEO SCREMIN?

ABSTRACT. Let £4 denote the ring of power sums, i.e. complex func-
tions of the form
Gn = arat + azay + ...+ aiay,

for some a; € C and a; € A, where A C C is a multiplicative semigroup.
Moreover, let F(n,y) € Ealy]. We consider Diophantine inequalities of

the form
|F(’I’L, y)| < an(dflfs)’

where a > 1 is a quantity depending on the dominant roots of the power
sums appearing as coefficients in F'(n,y), and show that all its solutions
(n,y) € N x Z have y parametrized by some power sums from a finite
set.

This is a continuation of the work of Corvaja and Zannier [4, 5, 6]
and of the authors [10, 18] on such problems.
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1. INTRODUCTION

Let £4 denote the ring of power sums, i.e. complex functions on N of the
form

Gp = a10] + agay + ... + aaf,
for some a; € C and «o; € A, where A C C is a multiplicative semigroup. If

K C Cis a field we define KE4 by the same formulas, but allowing a; € K.
The a; are called the coefficients of G,, and the «; are called the roots.

It is well known that such a power sum G,, satisfies a certain linear re-
curring equation (see [10]). Namely, set

(1) [[(X-e)=X'—A X" - - 4
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for Ay, Ag,..., Ay € C. Then the sequence (G,,) satisfies the ¢-th order linear
recurring relation

G,=A1G 1+ ...+ AGy pforn=kk+1,...,

with initial values Gy, G1,...,Gr_1 € K. We remark that the general solu-
tion of such a linear recurring relation is a “generalized” power sum being
of the same form as above, but allowing the a; to be polynomials in n and
the ¢; € C. Thus, we are considering linear recurring sequences (G, ), where
all roots of the corresponding characteristic polynomial are simple.

Below, A will be usually Z; in that case we define 8% the subring formed
by those power sums having only positive roots, i.e. the roots belong to
the semigroup N. Working in this domain causes no loss of generality: this
assumption may be achieved by writing n = 2m + r and considering the
cases r = 0, 1 separately.

The power sum G, is called nondegenerate, if no quotient o;/c; for
1 <4 < j < tisequal to a root of unity. Observe that restricting to
nondegenerate recurring sequences causes no substantial loss of generality.

In the present paper we are dealing with Diophantine problems, where
power sums are involved. E.g. many Diophantine equations involving linear
recurring sequences were studied earlier, for instance in the special case

Gn = E1!, E € Z\{0}.

A survey about this equation can be found in [14, 15] and in more general
form in [8, 11, 10].

Also Diophantine inequalities were studied previously, we just mention a
result due to Shorey and Stewart [19], who proved that for any fixed € > 0
the inequality

|Bx? = G| > |y ["79,

where G, € & (where Q denotes the algebraic closure of Q) is nondegen-
erate, holds for all nonzero integers F,x, for n > 0, and for every nonzero
integer ¢ > qo(Gp, P), where P is the greatest prime factor of E, assuming
that Ez? # ciay and that in G, there is a root with largest absolute value.
This result was obtained by the application of lower bounds for linear forms
in logarithms of algebraic numbers due to Baker [1].

In 1998, a new development was started by Corvaja and Zannier [4]. They
considered power sums defined by
Gn =c1al + coaf + -+ + oy,

where t > 2,¢1,c¢9,...,c; are non-zero rational numbers, a; > ag > -+ >
a; > 0 are integers. They used Schmidt’s Subspace Theorem [16], [17]
to show that for fixed ¢ > 0 and every integer ¢ > 2 there exist power
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sums HS), e ,Hff) € @5@ such that all solutions (n,y) € N x Z of the
Diophantine inequality

Y7 — G| < |G| a7

apart from finitely many, satisfy y = Hy(f) for a certain ¢ = 1,...,s. As a
consequence, for every ¢ > 2 the equation G,, = z? has only finitely many
solutions, if we suppose that a1, ap are coprime.

From this point on two developments started. On the one hand more
general Diophantine equations, where power sums (or linear recurring se-
quences) are involved were studied (e.g. cf. [5, 6]). Also quantitative as-
pects were handled in view of the existence of quantitative version of the
Subspace Theorem (e.g. due to Evertse [7]) (cf. [11, 8]). On the other hand
new results for Diophantine inequalities were obtained (e.g. [2, 9]).

Recently, the second author studied lower bounds for the quantity |F(G,,
y)|, where F(z,y) € Q[z,y] is absolutely irreducible, monic and of degree
d > 2 in y. He proved that for G,, € Q&z and for fixed € > 0 there exists
a finite set of power sums Hr(ll),...,Hés) € 6'% such that every solution
(n,y) € N x Z, apart from finitely many, of the Diophantine inequality

PG| < |5

o (G| 16l

satisfies y = H7(li) for a certaini =1,...,s.

Very recently, the authors considered Diophantine equations, where more
than one power sum is involved [10]. The aim of the present paper is to
generalize this result to Diophantine inequalities, where also more than one
power sum G, is involved.

First we need some notation. Let d > 2 be an integer and let G%l), ceny Gsbd)
€ Q&S i.e. we have

G’Sll) — agl)agl)n + (lél)aél)n + ...+ (lg(ll)) ag(ll))na

G = oD @™ 4 (D" L aiﬁ}) ai{id))n ,

where al(-j ) are algebraic and agj ) are positive integers such that agj ) > agj ) >
>alf) foralli=1,...,t9 and j = 1,...,d.
We are studying lower bounds for the quantity

|F(n,y)|,
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where F' € £ [y]. This is equivalent to study bounds for

yd + Gsll)yd*1 + ...+ G%d)

Now, we set (for a positive real determination of the roots)

oo e [, (), o50) ) = ()

Moreover, let
n

y=a"z.
Then consider
(2) ﬁ ((a"z)d + G (a"2) 4 4+ G%d)).

This is a polynomial in z with coefficients in Q&4, where A is the multi-
plicative group generated by

o and the roots of G,...,G9,

Observe that all the roots which appear in the coefficients are < 1, because of
our construction and that the coefficient of 2% is 1 (cf. Lemma 2 in [10]). Let
Y1,---,7 denote the different roots of these power sums, which are strictly
less than 1. Identifying the expressions 7" in (2) by new variables z;, we
get a polynomial (linear in z1,...,z,) g(z1,...,2r,2) € Qz1,..., 7, 2] such
that

1
3) g0l 2) = = (@) + GD () + ..+ 6.

This polynomial is some kind of normal form for our problem. We denote
by D( %1), . ,G%d)) the discriminant of g with respect to z evaluated at
(0,...,0), i.e.

DG, ..., G\D) = disc,(g)(0,...,0).

n

‘The main result of the authors in [10] was: Let d > 2 and let Gg), ey G\
€ Qé’i" . Assume that

(4) D(GY,...,GD) 0.
Then there exist finitely many recurrences Hy(Ll), e, H,(LS) with algebraic co-
efficients and algebraic roots, arithmetic progressions Pi, ..., P, such that

for the set S of solutions (n,y) € N x Z of the equation
y + Gy 4+ Gl Yy W =0
we have

S = U{(n,Hr(f)) :n€ePUM,
i=1

where M is a finite set. In fact, they also allowed the coefficient of y¢ in

(0)
n

the equation above to be a power sum Gy, ’, which leads to another possible
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“trivial” infinite family of solutions, but for simplicity we will always assume
the above situation in this paper.

2. REsuLTS

From the discussion above we are searching for an exponential lower
bound for the quantity

(5)

(in terms of a to some power k). In the following we divide N x Z in two
regions depending on whether |y| is above or below the curve ca™, where

d
(6) c:= Z ‘agi) +1
i=1

In fact the behavior of (5) depends on the region where we are looking for
solutions. First it is easy to get the following statement.

yd + Gszl)yd_l 4.+ GSzd)

Proposition 1. Let d > 2, G,(ll), ceey G%d) € @E%. Let
U={(n,y) e NXZ: |y >ca™}.
Then the Diophantine inequality

g+ Gy 4+ G| < o™,

has only finitely many solutions (n,y) € U.

Remark 1. We mention that the result is not true if the exponent on the
right hand side increases, i.e. the exponent is best possible. Let us consider,
for a given € > 0, the Diophantine inequality

‘yS _ an| < a3n(1+e)’

where a = a%,a > 1. We have ¢ = 2. Putting
yn = [2a% +1],
we have
‘yz _ an‘ < 8" < an(H—e)
for large n.
In the lower part of the plane, i.e. in £ = {(n,y) e NXZ : |y| < ca™},

we cannot expect to get just finitely many solutions, in view of the results
(cf. [10]) on the equation

y + Gg)ydfl +...+ G =y,

n

which can have a functional solution.
Our main result is the following characterization of the solutions:
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Theorem 1. Let d > 2, Gg), e ,G,(ld) € @5%. Assume that
(7) D(GY,...,G) #0.

Finally, lete > 0. Then there exist finitely many recurrences HT(LI), ... ,HT(ZS) €
@5@ such that all the solutions (n,y) € N X Z of the Diophantine inequality

(8) yd + Wyt 4 4 QW < gnld-1me)
except finitely many, have y = H,gi) for somei=1,...,s. Moreover, the set

of natural numbers n such that (n,y) is a solution of the inequality is the
union of a finite set and a finite number of arithmetic progressions.

Remark 2. Observe that for G5 = ... =GV =0and G\Y = -G, € &
we get the conclusion for the inequality

de1— n(lflfe’)
< o™ ) = o ¢

7

‘yd - Gn

where ay is the dominant root of G, i.e. the result of Corvaja and Zannier
[4]. This also shows (cf. Remark 2, page 321 in [4]) that the ezponent
d—1— € in Theorem 1 is best possible.

Remark 3. Consider
Gsll) = pl(Gn), G7(12) = pZ(Gn)a Tty G7(1d) = pd(G”)’

where p;(z) € Q[z] are polynomials of degree ij for j = 1,...,d and where
G, € Q€y. Let ay denote the dominant root of Gy,. Then,

R
-

td—1
_ a1 i1 d
a-max{al , 0 T Ly } > af.
We get our conclusion for the inequality

y?+ Gy 4+ G| < a1,

In comparison the result in [18] implies the same conclusion only for

e O Bpe () <a711(1—%—6)_

This means that although the exponent in the result in [18] is best possible,
the upper bound is not (and this is clear, because it does not take care of the
special structure of the polynomials p1,...,pq). Therefore, Theorem 1 above
is an improvement of this result. Observe that the upper bounds are equal
only in the case

GS) :ala...,Gszdil) =ag, @1,-..,04 €Q

which is more or less the case from Remark 2 above.
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Remark 4. As we use the Implicit Function Theorem as our driving tool,
it is clear that condition (4) is equivalent to

(4) <= ¢(0,...,0,2) has only simple roots <=

0 .
— a—g(a,...,ﬂ,z,-) £0,i=1,...,d,
where z; are the roots of g(0,...,0,z). Note that a similar condition already

appeared in the main result in [5].

Remark 5. Observe that it is easy to verify whether the inequality has
infinitely many solutions or not (cf. [18, Remark 5.1] and [10, Remark 2]).

As in [18] we get as a simple application of our main theorem the following
result, which generalizes the result in [10]:

Corollary 1. Let d > 2, Gg), .. .,G%d) € @82’ not all constant. Moreover,
let f(x) € Z[z] be a non constant polynomial. Assume that

DG, ...,GD) £ 0.
Then the Diophantine equation
y'+ Gy L+ GEY = f(n),
has only finitely many solutions (n,y) € N x Z.

Moreover, we get the following result, which looks quite interesting: Let
Ny(n) denote the number of solutions of the Diophantine inequality

v+ Gyt 4 G| < rld=1-0),

for fixed n. Obviously, we have N,(n) < oo for all n € N, because the left
hand side of the above inequality goes to co as |y| becomes large. Surpris-
ingly, the above result implies that there exists a uniform upper bound not
depending on 7.

Corollary 2.
Ny(n) S Ca
where C' is a constant which does not depend on n.
Remark 6. Moreover, observe that the constant C is effectively computable

in view of the existence of quantitative versions of the Subspace Theorem,
e.g. due to Evertse [7].

3. AUXILIARY RESULTS

The proof of our theorem depends on a technical result due to Corvaja
and Zannier [6, Theorem 4|, which is derived as a consequence from the
famous Subspace Theorem of W. Schmidt (cf. [16, 17]).



8 CLEMENS FUCHS AND AMEDEO SCREMIN

Let K be an algebraic number field. Denote its collection of places by Mg
and let S be a finite set of absolute values of K containing the archimedean
ones. For every place v of K we note by | - |, a continuation of it to Q
and normalize it “with respect to K”: according to this normalization, for

z € K* the absolute logarithmic Weil height is
W)= 3 logmax{1, |z|,}
UEMK
and the Product formula
9) H |z}, = 1
vEMK

holds. We note that these conditions uniquely determine our normalizations.
We also define the S-height of a non zero element z € K* to be

hs(z) = logmax{l, |z[,}.
vgS
For S-integers this height vanishes, so it measures "how far” x is from being
an S-integer.
For a vector x = (xg,x1,-..,%,) € K"™1\{0}, (n > 1), we define h(x) as
the usual projective logarithmic height. Also, we denote by ﬁ(x), the sum
of the h(z;),0 < i < n. Moreover, we put, for an absolute value v,

||y :== lgl%ﬁ{lwilv}-

We use H,Hgs and 7 for the exponential heights.

Theorem 2 (Corvaja and Zannier). Let K be a number field, S a finite set
of absolute values of K containing all the archimedean ones, v be an absolute
value from S, € be a positive real number, N > 0 an integer. Finally, let
0y---,CN € K. For 8 > (N+2)e, there are only finitely many (N +1)-tuples

w = (wp, ..., wy) € (K*)N*! such that the inequalities
(i) hs(w;) + hg(w; ) < eh(w;), fori=1,...,N
(27,) |C()’w() +cw+...+ CNUJN‘v < (H(wo)HS(wo)N+1)_1 'H(W)fd

hold and no subsum of the c;w; involving cowy vanishes.

Our second tool is the Implicit Function Theorem. The basic form of the
Implicit Function Theorem is the assertion that a function in n variables,
of sufficient smoothness, satisfying an appropriate nondegeneracy condition,
can be used to define one of the variables as a function of the other n — 1
variables. Here we will consider the implicit function theorem in the real
analytic category (see [12], page 35 and [13]). We will use the following
notation: a multiindez « is an element of N. Set

la] = |og + ...+ aml.

We will write 0 to mean the multiindex (0, ...,0).
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Theorem 3 (Implicit Function Theorem). Suppose the power series
F(z1,...,zr,y) = Z Qo gt - xlryk
la]>0,k>0
is absolutely convergent for |z1|+ ...+ |z.| < Ry, |y| < Ry. If
apo =0 and ag1 # 0
then there exist ro > 0 and a power series
(10) flzy,...,z;) = Z CaZt o T2
>0

such that (10) is absolutely convergent for |z1|+ ...+ |z,| < 7o and

F(zi,...,xp, f(x1,...,2,)) = 0.

Moreover: if the coefficients of F' are algebraic, then the coefficients of f are
also algebraic.

We mention once again the lemma from [10] that assures that the con-
struction leading to the polynomial g appearing in (3) has the properties we
have claimed.

Lemma 1. Let G%l),...,G,(ld) and a be as in the Introduction. Then the
dominant root in

(0"2)? + GV (a"2) +...+ G
is o and it appears as coefficient of 2% and as coefficient of z47* for all
indices k with

i

(k)

o = Oll )
i.e. for all indices where the mazimum in the definition of o appears.

This is Lemma 2 in [10]. The additional statement can be found as a
remark at the end of the proof in [10].

4. PROOF OF PROPOSITION 1

We will prove the statement by contradiction. Let us assume that the
inequality

Yyt + G,(ll)yd_1 +...+ G,(Id) < o™

has infinitely many solutions (n,y,) € U with n € 3, where ¥ is a sequence
of positive integers. By setting

Yn = "2y
and by dividing through by o™ we get
9O zm)| <1,
with the polynomial g defined in (3).
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First, we show by another indirect argument that the sequence (zp)nex,
for the corresponding sequence (n,z,) € N x K with n € X, is bounded by
c as defined in (6). Suppose that |z,| > ¢ > 1 for some n € . We can write
(see Lemma 1)

9(@1, .. mr,2) = 2%+ pr(@n, .. )2 L pala, . w)
with polynomials p;(x1,...,z,). Dividing by |237!|, we get
|Zn +p1(’y?7 7’71?) +... +pd(7{b7 ,7?)Z;d+1| S |zﬁd+1| S 1- ¢,
for some € > (0. By Lemma, 1 we have
nli—>nolopi(71n’ M) = G*gZ)
for all 4 =1,...,d and thus by reminding the definition of ¢ we get

P15 ) )z T < e =1 e
which holds if n is large enough. Consequently,

‘Zn| < |p1(7?577;l) +... +pd(7?""777’r‘z)z';d+1‘ + ‘Z’;d—i—l‘ <e¢

which is a contradiction, that proves that the sequence (z,)nex is bounded.

We got that |2,| < ¢, which in turn implies
[yn| = a"|zn| < ca™.
This means that our solutions do not lie in U, which is a contradiction
proving that there are at most finitely many n for which a solution (n,y) € U
exists. Since the inequality under consideration has clearly finitely many
solutions y for any fixed n, we can conclude that it has only finitely many
solutions (n,y) € U. O

5. PROOF OF THEOREM 1

In the sequel Cy,Cs,... will denote positive numbers depending only on
(1) G\9

the coefficients and roots of Gy, 7, ..., Gy .

First we consider solutions of the form (n,0),n € N. In this case the
inequality reduces to

‘G%d)‘ < qn(d=1-6)
But in this case we trivially have finitely many solutions, if the dominant
root of Gsld) is > a?"!17¢. In the case that agd’) < o4717¢ the inequality is
satisfied for all n large enough, i.e. for all n with finitely many exceptions.

The last case is that

d -
ag):ad e,

Clearly, if |agd)| > 1 we have only finitely many solutions and if |a§d)\ <1
we have solutions for all n large. If |a§d)\ =1 we look at
G — agd)agd)n.
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If n is large enough this is either always positive or negative and less than
agd)agd)n. Therefore, depending on whether the sign of agd) and agd) are
equal or not, we get, as before, that we have only finitely many solutions
or solutions for all n with finitely many exceptions. Consequently, we can
restrict ourselves to solutions of the form (n,y) € N x Z with y # 0. More-

over, by Proposition 1, we can assume that |y| < ca™, i.e. that (n,y) € L.

Thus, in the following, we consider only solutions (n,z) € N x K of
(11) g(’Y{La--- 7’)’77},2!) < afn(H'f)

with the polynomial g defined in (3) and with 0 < |z| < ¢ as defined in (6),
(1) a9
m e

n o

where K is the number field generated by the coefficients of G
and by a.

Now since D(Gsll), . ,Gsld)) # 0, by the Implicit Function Theorem 3 we
can conclude that

(12) g(o1,. .. 2r,7) = (z—z )(—z )
[i|>0 |4 >0

with a; ; € Q, where z; == ag;,i = 1,...,d satisfy ¢(0,...,0,2;) = 0. The
series

o1(1,..., ) = Z ainxit -zl (T, x,) = Z @i gzt -z
li|>0 li|>0
converge around the point (z1,...,z,) = (0,...,0). Observe that for n large
enough each solution (n, z) of (11) gives rise to a point (¥f,...,7") lying in
the region of convergency of ¢; for some j =1,...,d, i.e. we get that
2= 0i( Vs W) =2 = Y it
4[>0
becomes arbitrarily small for some j = 1,...,d and if n is large enough. We

remark that here we need that (n,y) € £, which implies that the sequence
of z is bounded.

From the assumption D(G%l),...,Gsld)) # 0 it follows that the z; are
distinct, because they are the roots of ¢(0,...,0,z) = 0. This means that g
is regular in the sense of the Definition in [18]. We consider now the sets

M; = {(n,z) : |z — 4l :i:nilindﬂz—goﬂ}}, j=1,....d.

Here we have used the notation ¢; short for ¢;(y7,...,7"). We will go on
using this notation below. Without loss of generality we restrict ourselves
to the case that (n,z) € M; and show the conclusion of the theorem only in
this case.
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By considering (n,z) € My we get from (12) that

g5 2)| = |z — w1l lz = @2] -+ |z — @4l

On the right hand side we have one “small” factor and all other factors are
“big”. We now want to calculate lower bounds for the quantities |z — ¢;],
i=2,...,d.

We calculate the contribution of the “big” terms: for every ¢ > 2 we have

1 1
|z — il > §|<Pz' -1 2 g'zi - 21,

for n large enough (recall that we are considering only those (n, z) which lie
in My, i.e. we have |z — 1| < |z — ¢;]). Therefore, we conclude

1 ) d—1 ~
|Z—(p2||z—(,0d| Z (g.mln {|zz—z1|}> = Ol 1.
1=2,...,d

We remark that this lower bound does not depend on n.

Thus, we get from (11) an upper bound for the “small” term |z — 1],
namely
Cr'e - gl < @70+

and therefore

(13) |z — 1] < Cra "(1+9),
We are going to approximate z by a finite sum extracted from
p1 = 2o+ Z ai Y =
[i]>0
= 2+ E ai,lfﬁln e ’Y’IZ"Tn +0 (ma‘X{IYIa ... a’YT}n(H_'—l)) :
0<|i|<H
We define

— § : 1n irn
Vo =20+ a1 Ve
0<|i|<H

where H > 1 is an integer to be chosen later. We may write
h
Vn =20 +Zei/82n7
i=1

where e; € Q and with 1 > 81 > ... > B, > 0 and with h < H". We enlarge
K at once and assume that it contains all the coefficients e;. Observe that
we have

(14) lo1 — V| < Cymax{yi, ...,y }"HEHD = C2Cg(H+1)’
with C3 := max{y,..., 7} < 1.
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We need an estimate for 7(z) for later purposes. We have

(15) ( ) max{H(y), H(a")} < ca®,

where we have used that H(y) = |y| < ca™ (since y € Z) and that H(a™) <
o™ too (since a to some power is an integer).

We choose H so that
(16) CHHa? < 1.

This is possible since C3 < 1 and from now on H is fixed and therefore
also h,e;, 8; for e =1,...,h are fixed. Moreover, we choose a finite set S of
absolute values of K so that it contains all infinite absolute values and we
require that all agj),i =1,... ,t(j),j =1,...,d are S-units. In particular,
with this choice all the §; are S-units and the z are S-integers, the last fact
following from the relation y = "z and the fact that the y are integers.

Last we need an upper bound for H((—z,1, 57, ... ,B))- First it is easy
to see that we have

H(y) < o,
since we have
aij)
Yi = =7

for certain j and k. Therefore, we get
H(B;) < o foralli=1,...,h.
Finally, we conclude

H((=2,1, 80, ..., 80) = H(z)H(B)" - - H(Bp)" < ca™IHHR)

where we have used (15).

Now we are ready to apply Theorem 2 with ¢ = —1,¢1 = zp,¢; = e;_1 for
t=2,...,h+1. Weput wg =2z, w1 =1and w; =", fori=2,...,h+ 1.
Since w; are S-units for ¢ > 1, assumption (i) of Theorem 2 is verified for
any choice of ¢ > 0.

We proceed to verify assumption (ii) for all large n, provided we choose
a small enough ¢, which we will fix later, and put 6 = (h + 4)e’. We have

by (13) and (14)
lcowo + crwr + ... + chp1Why| =
= |z = Val < |z = @1] + |1 — Val < C1a7"149 4+ G0 <
< Clafn(1+6) + 02047271 < C4afn(1+c)’

where CH¥*1 < o2 holds by (16).
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To compare this estimate with the right side of (ii) in Theorem 2, we first
observe that Hg(wp) = 1, since wy = z is an S-integer. Therefore we get

(H(wo)Hs(w())h+1)_1 ’}:[(w)f‘s > cf(1+6)afn(1+6(1+dHh))
where we have used
H(wy) = H(z) < e,
H(w) = H((—2, 1, 67, 7)) < camHHD.
The verification of (ii) will follow from
Cua(1H9) < (140) o =n(1+d(1+dHR)
which is clearly true by choosing

d=(h+4)¢ < <

(1+dHh)
and n large enough.

Now from Theorem 2 it follows that either there are finitely many possi-
bilities for w = (—z,1,87,...,3}) and therefore finitely many pairs (n, z)
of solutions of (11), or we have a vanishing subsum of

h
Cowo + Ccrwi + ...+ Cpy1Whi1 = —2 + 20 + Z eiB;

i=1
involving cowg = —z, i.e. we have
h
(17) Z:’U()—FZ’UZ'B;"L, UiEQ,'i:O,---,h,
i=1

with v9 € {0,%} and v; € {0,e;},7 = 1,...,h. Substituting this into
|g($1; s a'TTaz)‘ we get

h
g (7?5"',7?a00+zvi6?)

i=1
and we consequently see that this can either hold for all n in a suitable
arithmetic progression P or holds only for finitely many n. The first case
leads to the power sum

< a—n(l—l—e)

h
H, = vpa" + Z’Ui (,Bza)n .
i=1
having the property that (n, Hy,) is a solution of (8) for all n in the above
arithmetic progression. The second case leads again to finitely many solu-

tions.

Finally, we get that all solutions of

v+ Gyt 4 G| < grld-1-9
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can be parametrized by finitely many power sums. Moreover, if we have
infinitely many solutions then n lies in the union of a finite set and a finite
number of arithmetic progressions. This proves the theorem. O

6. PROOF OF THE COROLLARIES

The proof of Corollary 1 runs along the same lines as the proof of Corol-
lary 3.3 in [18]. O

Corollary 2 is an immediate consequence of Theorem 1. O
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